Banner image2.jpg

Department of Bioengineering

The brain as a system:

From theory to engineering


We use mathematics and engineering to understand the brain and to create 'thinking' machines

Our lab's research is focused at the intersection of mathematics, physics, and engineering in order to understand how the brain learns, represents, and processes complex information, what happens when there is a breakdown in signaling in neurological disorders, and how we can use what we learn to develop novel neural derived algorithms that capture the properties of neural computation in order to develop new artificial intelligence architectures. We are also involved in developing nanotechnologies to interface with the brain and neural sensory retina.

The individuals in our lab both present and past include research scientists, visiting scholars, postdocs, graduate students, medical students, and undergraduate students with diverse backgrounds, including electrical engineering, computer science and engineering, bioengineering, mechanical engineering, physics, mathematics, materials science, neuroscience, and chemistry.

Everyone brings their unique backgrounds and perspectives towards our common goal of understanding the brain as a dynamic system. We want to attempt to understand how the brain learns and encodes and manipulates information as it understands, reacts, and thrives in the environment in which it finds itself. 



Professor Gabriel A. Silva

Department of Bioengineering
University of California, San Diego
9500 Gilman Drive MC0412
La Jolla, California 92093-0412

Department of Bioengineering
Department of Neurosciences
And the Center for Engineered Natural Intelligence (CENI)


Our research

computational neuroscience and biophysics

Mathematical and physical modeling and simulations of neural processes at molecular, cellular, and systems scales, for the purpose of understanding how structures in the brain represent and process information. We have had a particular focus on modeling the calcium signaling dynamics of astrocyte neural glial cells.

applied nanotechnology

Our lab engaged in the development and use of nanotechnology to study and interface with the brain. In particular, we have previously worked on the development of self assembling nanotechnologies for neural regeneration, and the optimization of chemically functionalized quantum dots to achieve high resolution imaging of cellular structure and calcium dynamics.

theoretical neuroscience

Distinct from computational modeling and numerical simulations of the biophysics of neurobiology, we have a strong focus on the theoretical analysis of dynamic signaling in networks(i.e. models, theorems, and proofs that drive new kowledge and predictions). We are interested arriving at a deep understanding of neurophysiological dynamics.  

neural engineering 

An extension of our nanotechnology work is development of nanoengineered neural technologies intended to interface with the brain and restore clinical function. Most recently, in collaboration with Nanovision Biosciences, our lab has been one of several labs involved in the development of a surgically implantable optoelectronic retinal neural prosthesis to restore vision. 

neural derived algorithms and AI

We are leveraging our theoretical and computational work to develop neural derived and neuromimetic (i.e. neural imitating) algorithms for non-biological engineered systems. In particular, we are developing a new class of geometric dynamic artificial neural network to create algorithms that will enable cognitive computing systems to achieve creative 'machine thinking'. 

applications to neurological disorders

Much of our work is of direct clinical relevance, or is translational and intended to restore clinical function. We have published on traumatic spinal cord injury and reactive gliosis, Alzheimer's disease, retinal prosthesis, and currently have a strong interest in the systems neuroscience of autism spectrum disorder (ASD) and realted neurodevelopmental disorders.


People who wish to analyze nature without using mathematics must settle for a reduced understanding.
— Richard Feynman


CENI competition team

The Center for Engineered Natural Intelligence (CENI) was selected as a competition team for the IBM Watson AI XPRIZE® competition. The IBM Watson AI XPRIZE® provides an interdisciplinary platform for domain experts, developers and innovators, through collaboration, intended to push the boundaries of artificial intelligence (AI).

The CENI XPrize team is combining many of the individual efforts and capabilities within the center in the pursuit of an effort aimed at augmenting cognitive computing systems in order to allow these system to produce “creative machine thinking,” using a new class of neurobiological derived algorithms that go beyond traditional machine learning methods. And we are working on developing generative natural language capabilities that will allow cognitive computing systems to be able to express those thoughts using natural language in its interactions with humans in real time.

There were 10,000 registrations for XPRIZE teams for this competition of which 147 were picked as competition teams with only 8 being academic teams, including us.