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Abstract. A basic neurobiology-clinical trial paradigm motivates our use of constrained
mathematical models and analysis of personalized human-derived brain organoids to-
ward predicting clinical outcomes and safely developing new therapeutics. Physical
constraints imposed on the brain can guide the analyses an interpretation of experi-
mental data and the construction of mathematical models that attempt to make sense
of how the brain works and how cognitive functions emerge. Development of these
mathematical models for human-derived brain organoids offer an opportunity for test-
ing new hypotheses about the human brain. When it comes to testing ideas about the
brain that require a careful balance between experimental accessibility, manipulation,
and complexity, in order to connect neurobiological details with higher level cognitive
properties and clinical considerations, we argue that fundamental structure-function
constraints applied to models of brain organoids offer a path forward. Moreover, we
show these constraints appear in canonical and novel math models of neural activity
and learning, and we make the case that constraint-based modeling and use of repre-
sentations can bridge to machine learning for powerful mutual benefit.

1 Introduction

Everything the human brain is capable of is the product of a complex symphony of interactions
between many distinct signaling events and myriad of individual computations. The brain’s ability

∗Corresponding author - G.S., Email: gsilva@ucsd.edu

1

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted July 28, 2020. . https://doi.org/10.1101/2020.07.28.225631doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.225631
http://creativecommons.org/licenses/by-nc-nd/4.0/


to learn, connect abstract concepts, adapt, and imagine, are all the result of this vast combinatorial
computational space. Even elusive properties such as self-awareness and consciousness presumably
owe themselves to it. This computational space is the result of thousands of years of evolution,
manifested by the physical and chemical substrate that makes up the brain - its ’wetware’.

Physically, the brain is a geometric spatial network consisting of about 86 billion neurons and
85 billion non-neuronal cells (1, 2). There is tremendous heterogeneity within these numbers, with
many classes and sub-classes of both neurons and non-neuronal cells exhibiting different physio-
logical dynamics and morphological (structural) heterogeneity that contribute to the dynamics. A
seemingly uncountable number of signaling events occurring at different spatial and temporal scales
interacting and integrating with each other is the source behind its complexity and the functions
that emerge.

To get a sense of the sheer size of the numbers that make up this computational space, a first
order approximation of the total number of synapses is roughly about ten quadrillion (3). Individual
neurons have been estimated to have order of magnitude 10,000’s to 100,000’s synapses per neuron.
The exact number of synapses varies significantly during the course of a person’s lifetime and
brain region being considered. For example, pyramidal neurons in the cortex have been estimated
to have about 32,000 synapses (4), interneruons, which are the computational workhorses of the
brain, between 2,200 and 16,000 (5), neurons in the rat visual cortex have about 11,000 per neuron
(6), and neurons in other parts of the cortex in humans have roughly 7,200 synapses (7, 8).

Yet, despite a size that is intuitively difficult to grasp, this computational space is finite. It is
limited by the the physical constraints imposed on the brain. The thesis we consider here is that
taking advantage of these constraints can guide the analyses and interpretation of experimental
data and the construction of mathematical models that aim to make sense about how the brain
works and how cognitive functions emerge. Specifically, we propose that there exists a fundamental
structure-function constraint that any theoretical or computational model that makes claims about
relevance to neuroscience must be able to account for. Even if the intent and original construction
of the model do not not take this constraint into consideration.

Testing candidate theoretical and computational models has to rely on the use of mathematics
as a unifying language and framework [20]. This lets us build an engineering systems view of
the brain that connects low-level observations to functional outcomes. It also lets us generalize
beyond neuroscience. For example, understanding the algorithms of the brain separately from
the wetware that impliment them will allow these algorithms to be integrated into new machine
learning and artificial intelligence architectures. As such, mathematics needs to play a central role
in neuroscience, not a supporting one. To us this intersection between mathematics, engineering,
and experiments reflects the future of neuroscience as a field.

There must also be plausible experimentally testable predictions that result from candidate
models. A particular sensitivity is that the predictions of mathematical models may exceed the
expressive capabilities of existing experimental models. This motivates the push for continuously
advancing experimental models and the technical methods required to interrogate them. While the
list to choose from across many different species and scales is long, and no experimental preparation
of course is ever perfect, we argue that human-derived brain organoids offer what could be a
unique model of the human brain for this purpose. In particular when it comes to testing ideas
about the brain that require a careful balance between experimental accessibility, manipulation,
and complexity in order to bridge neurobiological details with higher level cognitive properties in
the intact human. This includes clinical considerations of relevance to health and disease. Or
the application of mathematical models and algorithms about the brain to machine learning and
artificial intelligence. Abstraction (for generalization) and validation, through human organoids to
humans, and models to machines, both support a systems-approach building on constraints while
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modeling behavior.
The rest of this paper we will explore these ideas in detail. We will start by exploring how

brain organoids from individual research subjects and patients offer an individualized opportunity
for personalized neuroscience that can occur in parallel with cognitive studies or clinical trials.
We then discuss the fundamental structure-function constraint and look at theoretical models that
explicitly or implicitly take this constraint into account. Finally, we also review experimental results
where the constraint anchors the interpretation of data.

2 Human-derived brain organoids as an experimental model

First developed by Yoshi Sassai and colleagues [11, 13, 14, 17, 18], neural structures can be derived
from human pluripotent stem cells. Brain organoids are pin-sized three dimensional self-organizing
structures composed of roughly 2.5 million neural cells. They can be generated from human pluripo-
tent stem cells, either embryonic stem cells directly or derived from human blastocysts, and from
induced pluripotent stem cells reprogrammed from somatic donor cell types. Beginning with ter-
minally differentiated cells, such as skin fibroblasts, genetic and cellular reprogramming is carried
out by carefully orchestrated exposure to specific sets of transcription factors and chemical environ-
ments [2, 21, 22]. The outcome is the de-differentiation of the initial cells back to an embryonic-like
pluriopotent stem cell state, with subsequent guided differentiation into different types of neurons
and other neural cells. The recapitulation of the developmental genetic program - or at least certain
aspects of it - produces three dimensional structures that spontaneously self-organize at a cellular
scale into anatomical structures that resemble aspects of the prenatal brain. For example, there is
a distinctly defined cortical plate on its surface, with a central cavitation resembling a ventricle.
The molecular composition of the constituent cells include markers for mature neurons and glia,
although markers for progenitors and immature cells are also present. It was recently shown that
if the culture conditions are appropriate, sufficient growth and maturation of organoids results in
them being able to display local field potential (LFP) like electrophysiological activity. Organoid
LFP’s are sufficiently similar in their firing frequency and patterns to prenatal human brains that
a machine learning algorithm trained on features of prenatal EEG’s can accurately identify relative
age matched organoids when shown the organoid LFP’s [2].

2.1 Bridging basic neuroscience to clinical and cognitive research

Human-derived brain organoids reflect a personalized model of the brain unqique to each indi-
vidual. Because of this, they could provide an opportunity to bridge biological experiments and
computational models with behavioral, cognitive, and clinical studies in humans that no other ex-
perimental model is able to achieve. Organoids derived from neurotypical individuals or patients
can be experimentally studied in parallel with cognitive experiments or clinical trials being carried
out in the same individuals. They can potentially put molecular, cellular and physiological scale ex-
periments distinct to each individual in context with cognitive and clinical studies that the subjects
or patients are participating in. This would be invaluable for the investigation of physiologically
complex genetically based neurodevelopmental and neurological disorders such as autism spectrum
disorder and epilepsy (Figure 1). Presumably, during the course of the cellular reprogramming,
the genetic program responsible for the development of that specific individual is reawakened and
recapitulated. Absent epigenetic, environmental, and myriad other factors that actually shape the
development of the brain - clearly an uncontrolled but unavoidable limitation of any such model -
brain organoids may offer an opportunity to study and understand key aspects of the neurobiology
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initiated by each person’s unique genetic program. A basic science-clinical experimental design
paradigm.

Figure 1: Identifying core gene sets that regulate neurodevelopment based on trait correlations. The charac-
terization of genotype-trait correlations in brain organoid models can define sets of genes and copy number
variations that share common phenotype profiles. These profiles could reflect conditions associated with
common neuronal function. For example, the effects of multiple gene mutations and copy number varia-
tions can be tested in relation to isogenic controls across a series of cellular assays. Subsequent analysis
allow genes, copy number variations, and common variants to be clustered into discrete groups. Comparing
patterns of trait correlations in organoid models versus clinical phenotype data (not shown) could help to
identify clinical subtypes that share common neuropathologies. Reproduced from [10].

In fact, we are currently pursuing this approach in a study at the University of California San
Diego focused on the effects of cannabidiol (CBD) on autism [24]. A key objective of this study
is to test a hypothesis in patient-specific derived brain organoids that there is a breakdown in
information (signaling) transfer efficiencies in neurons and neuronal networks in autistic individuals.
We are investigating this by attempting to measure deviations in a calculation we call the refraction
ratio. The refraction ratio is derived from theoretical considerations of the fundamental structure-
function constraint we discuss below. We will then compute the refraction ratio again following
bath exposure to different concentrations of CBD and compare it to the data prior to treatment.
This is all occurring in parallel while the patients themselves are participating in a CBD clinical
trial. One possibility we are testing is if there are aspects of a potential clinical response that
can be predicted by the refraction ratio-organoid basic studies. It is conceivable that in future
clinical studies parallel in vitro studies with brain organoids are used to optimize testing or dosing
conditions, for example, or to provide physiological context to observed clinical effects. This dual
basic neurobiology and computational neuroscience analysis in parallel with a clinical study or
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individualized cognitive experiments cannot realistically be done in any other experimental model.
It requires a degree of personalization of the uniqueness of each individual’s brain, or at least
aspects of it, that no animal model or ’generalized’ model of the brain can achieve. At the same
time, brain organoids seem to be sufficiently complex that they provide a real test bed for systems
neuroscience theoretical and computational models specific to the individual subject or patient.

2.2 Open questions

To be sure, there are many unanswered questions about exactly how appropriate organoids are
as a model of the brain. Brain organoids are not brains and do display a number of limitations.
For example, they are not vascularized, do not have all cell types present, and retain populations
of immature neurons with confused identities. There are also a number of technical challenges
that must be addressed in order to study them properly, such as how to image their connectome
given their size, and how best to do three dimensional electrophysiology given their geometry. But
answering these open questions and continuing to improve the experimental methods in order to
assess the utility of organoids as a sufficiently complex model of the human brain is very much
worth the pursuit, and at the forefront of this research. There is a high level of excitement at the
prospect of them being a unique developmental and physiological model of the brain.

Scientifically, a number of questions about the impact of the structure-function constraint on
neural development and functions specific to the human brain motivate much of our work. Yet,
we can only realistically address these questions using the brain organoid model, or something like
it. On the one hand, it is unclear how generalizable answers to our questions derived from exper-
imental models from other species would be. On the other, the technical requirements associated
with the measurements and manipulations necessary to answer these questions cannot be done in
intact humans. For example, does the genetic program responsible for the development of the brain
support a connectivity structure of the network that is stochastically but purposefully wired? In
other words, are the geometric and topological properties of the brain purposely designed, or are
they just random? A naive interpretation of what we mean by ‘purposely built’ is a structural
network designed to sustain inherent and recurrent activity in response to a stimulus (either ex-
ternal, i.e sensory, or internally generated), by satisfying the dynamic constraints of non-zero and
non-saturated activity. Presumably, it is this functional regime that supports sustained recurrent
activity resulting in rich dynamical repertoires in order to achieve a meaningful neurophysiological
operating range. How is this designed in the brain to support meaningful neural dynamics? Below
we give an example of how easily the ’wrong’ geometry and connectivity in a network can kill
dynamic activity, but do so in a simulation of a biological neural network [5]. We also discuss
results that suggest that in the worm C. elegans at least, the wiring of the organism’s connectome
seems to have evolved to intentionally support sustained recurrent activity [8]. But such a basic
theoretical hypothesis about the operation of the brain, grounded in fundamental ideas about its
physical structure and dynamics, cannot be directly tested in humans. Brain orgaoids offer the
opportunity to bridge this gap.

3 A fundamental structure-function constraint

3.1 A fundamental constraint imposed by neural structure and dynamics

Any theoretical or computational model of the brain, regardless of scale, must be able to account
for the constraints imposed by the physical structures that bound neural processes. This is a
reasonable requirement if the claims being made by a model are that the brain actually works in
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the way its describing. The conditions that determine these physical constraints are informed by
neurobiological data provided by experiments.

One very basic constraint is the result of the interplay between anatomical structure and signal-
ing dynamics. The integration and transmission of information in the brain are dependent on the
interactions between structure and dynamics across a number of scales of organization. This fun-
damental structure-function constraint is imposed by the geometry (connectivity and path lengths)
of the structural networks that make up the brain at different scales, and the resultant latencies
involved with the flow and transfer of information within and between functional scales. It is a con-
straint produced by the way the brain is wired, and how its constituent parts necessarily interact,
e.g. neurons at one scale and brain regions at another.

The networks that make up the brain are physical constructions over which information must
travel. The signals that encode this information are subject to processing times and signaling
speeds (conduction velocities) that must travel finite distances to exert their effects - in other
words, to transfer the information they are carrying to the next stage in the system. Nothing is
infinitely fast. Furthermore, the latencies created by the interplay between structural geometries
and signaling speeds are generally at a temporal scale similar to the functional processes being
considered. So unlike turning on a light switch, where the effect to us seems instantaneous and
we can ignore the timescales over which electricity travels, the effect of signaling latencies imposed
by the biophysics and geometry of the brain’s networks cannot be ignored. They determine our
understanding of how structure determines function in the brain, and how function modulates
structure, for example, in learning or plasticity.

While a model or algorithm does not explicitly need to take this fundamental structure-function
constraint into account, it must have an implicit inclusion of constraint dependencies in order to be
relevant to neurobiology. In other words, additional ideas and equations should be able to bridge
the model’s original mathematical construction to an explicit dependency on the structure-function
constraint.

For example, a model that relies on the instantaneous coupling of spatially separable variables
can never be a model of a process or algorithm used by the brain because there is simply no
biological or physical mechanism that can account for such a required mathematical condition.
The requirement that any realistic candidate model of a brain algorithm be able to accommodate
the structure-function constraint is simply the result of the physical make up and biophysics of
biological neural networks.

3.2 The fundamental structure-function constraint in three different models

To illustrate these ideas, we discuss the dependency of the fundamental structure-function con-
straint in three distinct examples. We chose these models in part because they capture different
functional scales, from molecular and ionic considerations at the single cell level to cellular neural
networks to a more abstract notion of life-long versus progressive learning. The first two models
have an explicit dependency on the constraint, while the third is implicit and requires extending its
mathematical construction to account for it. In this section we qualitatively summarize each exam-
ple. The Appendix extends this discussion and includes explicit references to the relevant equations.

The Hodgkin Huxley model. Consider the canonical Hodgkin Huxley model of a neuron. The
fundamental structure-function constraint is explicit in the model’s equations. Current flows in the
cable equation are computed along the dominant one dimensional direction of the axon as a function
of time. The membrane biophysics, due to the effects of the participating sodium and potassium
ion channels, completely determines the passive spatial and temporal decay of potentials along the
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membrane. This is captured by the time and space constants, respectively. The space constant is
the distance over which the potential has decayed a certain amount of its original amplitude. This
is a critical consideration for the spatial and temporal summation of post synaptic potentials along
the dendritic tree towards reaching the threshold potential necessary to trigger an action potential
at the axon hillock. The membrane potential dynamically depends on the spatial variable and
propagation latencies of ionic changes that determine signaling events.

In the solution to its equations, the variables that account for these changes ultimately deter-
mine the temporal kinetics of the action potential. If the membrane refractory state associated
with the recovery of sodium channel inactivation is taken into consideration, the conduction ve-
locity of the traveling action potential can be derived. This reflects the rate at which information
can be communicated or transferred between neurons. We refer the reader to any of the standard
presentations of the Hodgkin Huxley model for full details [1, 4, 7, 12].

Competitive-refractory dynamics model As a second example, we (G.S.) recently described
the construction and theoretical analysis of a framework (competitive-refractory dynamics model)
derived from the canonical neurophysiological principles of spatial and temporal summation [19].
Like the Hodgkin Huxley model, the dependency of the model on the fundamental structure-
function constraint is explicit in its construction and equations. In fact, the entire theory takes
advantage of the constraints that the geometry of a network invokes on latencies of signal transfer
on the network. But unlike Hodgkin Huxley it is not a biophysical model. It is a mathematical
abstraction applicable to any physically constructible network.

The framework models the competing interactions of signals incident on a target downstream
node (e.g. a neuron) along directed edges coming from other upstream nodes that connect into it.
The model takes into account how temporal latencies produce offsets in the timing of the summation
of incoming discrete events due to the geometry (physical structure) of the network, and how this
results in the activation of the target node. It captures how the timing of different signals compete
to ‘activate’ nodes they connect into. This could be a network of neurons or a network of brain
regions, for example. At the core of the model is the notion of a refractory period or refractory
state for each node. This reflects a period of internal processing or inability to react to other inputs
at the individual node level. The model does not assume anything about the internal dynamics
that produces this refractory state, which could include an internal processing time during which
the node is making a decision about how to react. In a geometric network temporal latencies are
due to the relationship between signaling speeds (conduction velocities) and the geometry of the
edges on the network (i.e. edge path lengths).

A key result from considerations of the interplay between network geometry and dynamics is the
refraction ratio - the ratio between the refractory period and effective latencies. This ratio reflects a
necessary balance between how fast information (signals) are propagating throughout the network,
relative to how long each individual node needs to internally process incoming information. It
is an expression that describes a local rule (at the individual node scale) that governs the global
dynamics of the network. We can then use sets of refraction ratios to compute the causal order
in which signaling events trigger other signaling events in a network. This allows us to compute
(predict) and analyze the overall dynamics of the network.

The last important consideration for our purposes here, is that a theoretical analysis of the
model resulted in the derivation of a set of (upper and lower) bounds that constrained a math-
ematical definition of efficient signaling for a structural geometric network running the dynamic
model. This produced a proof of what we called the optimized refraction ratio theorem, which
turned out to be relevant to the analyses of experimental data, which we discuss in the next section.
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Support from experimental results. The effects of the structure-function constraint can be
seen in experimental results through analyses that make use of the competitive-refractory dynamics
model. We have shown in numerical simulations that network dynamics can completely break
down in geometric networks (such as biological neural networks) if there is a mismatch in the
refraction ratio [5, 19]. In numerical simulation experiments, we stimulated a geometric network
of 100 neurons for 500 ms with a depolarizing current and then observed the effects of modifying
the refraction ratio (Figure 2). While leaving the connectivity and geometry (edge path lengths)
unchanged, we tested three different signaling speeds (action potential conduction velocities) at 2,
20, and 200 pixels per ms. We then observed the network to see how it was able to sustain inherent
recurrent signaling in the absence of additional external stimulation. At the lowest signaling speed,
2 pixels per ms, we saw recurrent low-frequency periodic activity that qualitatively resembled a
central pattern generator. When we increased the speed to 20 pixels per ms, there was still some
recurrent activity but it was more sporadic and irregular. At 200 pixels per ms however, there was
no signaling past the stimulus period. All the activity died away. This is the direct consequence of a
mismatch in the refraction ratio. When signals arrive to quickly, the neurons have not had enough
time to recover from their refractory periods and the incoming signals do not have an opportunity
to induce downstream activations. The activity in the entire network dies.196 M. Buibas and G. Silva
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Figure 3: Effects of signaling speed on network dynamics. (A) The spatial lo-
cations of vertices and physical connections. (B) Functional connections are
assigned random weights uniformly distributed between −1 and 1 on each
physical edge. An Izhikevitch simple model of bursting neurons was used to
model the individual vertex dynamics. (C) When the speed of signal propaga-
tion is varied, the delay distributions are scaled and have a substantial impact
on the spike dynamics (see text).

of depolarizing current. The delays are inversely proportional to the signal
propagation speed. We illustrate the effects of three signaling speeds: 2, 20,
and 200 pixels per ms. At the lowest signaling speed, 2 pixels per ms, a
low-frequency periodic activity was produced that qualitatively resembles
a central pattern generator. At a speed of 20 pixels per ms, fewer cells ex-
hibited low-frequency oscillations, and signaling became more sporadic.
For both the 2- and 20-pixel per ms propagation speeds, however, signaling
continued past the period of stimulation. At a propagation speed of 200
pixels per ms, however, there was no signaling past the stimulus period.
In fully recurrent networks such as the one illustrated here, delays serve
as a form of signal storage, essentially giving cells time to recover from a
refractory period between activations, which maintains recurrent signaling
propagation well beyond an initial stimulus. For some appropriate range
of signaling speeds, and therefore delay times, this recurrent signaling can
settle into a repeatable pattern. If, however, the signaling speeds are too
fast, incoming signaling from upstream cells never has an opportunity to

Figure 2: Effects of the structure-function constraint on the dynamics of a geometric network. A. We
simulated a 100 node network of Izhikevitch neurons with a geometric construction (i.e. spatial coordinates
of nodes) as shown in the figure. B. Functional connections were assigned random uniformly distributed
weights between -1 and 1. C. Raster plots of the dynamics of the network for three different signaling speeds
(conduction velocities). Reproduced from [5].

Using a refraction ratio analysis, we also showed that efficient signaling in the axon arbors of
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inhibitory Basket cell neurons depends on a trade-off between the time it takes action potentials to
reach synaptic terminals (temporal cost) and the amount of cellular material associated with the
wiring path length of the neuron’s morphology (material cost) [16]. Dynamic signaling on branch-
ing axons is important for rapid and efficient communication between neurons, so the cell’s ability
to modulate its function to achieve efficient signaling is presumably important for proper brain
function. Our results suggested that the convoluted paths taken by axons reflect a design compen-
sation by the neuron to slow down action potential latencies in order to optimize the refraction
ratio. The ratio is effectively a design principle that gives rise to the geometric shape (morphology)
of the cells. Basket cells seem to have optimized their morphology to achieve an almost theoretical
ideal of the refraction ratio (Figure 3).

We have also analyzed the signaling dynamics of the C. elegans connectome to infer a purpose-
ful connectivity design to how the nervous system of the worm has evolved to be wired [8]. We
simulated the dynamics of the C. elegans connectome using the competitive-refractory dynamics
model that took advantage of the known spatial (geometric) connectivity of the worm. We studied
the dynamics which resulted from stimulating a chemosensory neuron (ASEL) in a known feeding
circuit, both in isolation and embedded in the full connectome. We were able to show that con-
tralateral motor neuron activations in ventral and dorsal classes of motor neurons emerged from
the simulations in such a way that they were qualitatively similar to rhythmic motor neuron firing
pattern associated with the locomotion. Part of our interpretation of the results was that there is
an inherent - and we proposed - purposeful structural wiring to the C. elegans connectome that
has evolved to serve specific behavioral functions.

Progressive transfer learning model The last example we will discuss is different than the
first two models in that there is no explicit dependency on the fundamental structure-function
constraint. But it is extendable to accommodate it. The model is a generalized approach for
transfer learning developed by one of authors (C.W.) and colleagues [23], which we call progressive
learning. This is an approach that supports transfer learning across tasks. In other words, given
data from a new task, the goal is to use all the data from previous tasks to better learn new tasks
then if we considered information from just the new task alone. This is a stronger requirement
than simply avoiding what is called catastrophic forgetting, which implies that the progressive
learning of additional new tasks does not degrade what you have learned previously. We defined a
forward transfer efficiency and a backward transfer efficiency. Forward transfer efficiency measured
a learning error given only information for the current task at hand. While backward transfer
efficiency measured the learning error given access to all the prior learned information in addition
to that for the current task.

The core of our argument relies on being able to evaluate a hypothesis that an observed input
results in a given output. For the single task case, this hypothesis is decomposed into three parts,
each with a successive purpose. Given an input, a transformer maps the input into an internal
representation. Following the construction of an internal representation to the input, a voter maps
the transformed input data into a posterior distribution on a response space. In the last step, a
decider takes the information from the voters and maps the (now transformed input) to an output.

The model’s core insight and innovation is the construction of ensemble representations, or
groupings, of learned transformations across tasks, which can then be used by deciders on new
tasks. In other words, the transfer of learned information between different tasks contributes to
learning new tasks. The decider combines the votes across all prior learned tasks to arrive at a
final posterior on the output.

When the learner is exposed to an additional new task, a single task hypothesis is generated,
along with an updated set of cross-task posterior distributions for tasks learned previously. We
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Figure 3: Refraction ratio analysis suggests Basket cell neurons optimize their morphology to the structure-
function constraint. A. Three dimensional morphological reconstruction of one of the rat neocortical Basket
cells from our data set. B. Model of the geometric network construction of an axon and its arborizations.
We computationally approximated the edge path length integrals connecting the axon initial segment to a
synaptic terminal C. Distribution of the refraction ratio for all branches forming the axon arbor for a single
neuron. The inset shows an example of one axonal branch for this cell. The refraction ratio was computed
independently for each axonal branch for all branches of the axon tree. The x-axes represents values of the
computed refraction ratio, while the y-axes shows the number or count of individual axonal branches. D.
Distribution of the refraction ratio for the full data set of 57 basket cells. Note the logarithmic scale in
order to account for outlier ratio values. All axonal branches (11,575) from all the neurons were computed
as statistically independent variables. E. The peak of the distribution shown in panel D occurred at 0.56,
while the median had a value of 0.92. The median value of all medians (inset) computed for each of the 57
neurons had a value of 0.91 This allowed us to normalize for neurons that may have been contributing a
disproportionate number of branches, thereby potentially skewing the median ratio for the entire population.
The mean of the median ratio distribution had a value of 1.01 with 49 neurons (86 % of the entire data set)
within one standard deviation. The theoretically derived ideal for efficient signaling in a geometric network
is unity (see the refraction ratio theorem in [19]). (D) Distribution of the refraction ratio for the entire data
set (same data shown in panel B) but with x-axis extending out to the full range of values in order to show
the few outliers (indicated by the red arrows). Inset: zoomed in view of the main plot out to a refraction
ratio of 60. Reproduced from [16].
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were able to show a number of applied examples of progressive learning using this model by the use
of lifelong forests and networks. Essentially, a modified decision forest or deep network approach
that makes use of such ensemble representations. We have shown that this approach is able to
successfully partition rather complex decision spaces efficiently (Figure 4), outperforming other
state of the art methods.

A B

C D

Figure 4: Examples of the forward and backward transfer of information in learned decision tasks. A.
Graphical distribution of R-XOR, an XOR (’exclusive or’ logical function) space that has orthogonal decision
boundaries to XOR. B. Lifelong forests showed positive forward transfer efficiency and ’graceful’ forgetting.
B. A spiral task distribution with five classes. We created a similar spiral distribution with three classes.
The five class problem has a finer optimal partition. D. Partition (decision separation) of the two classes
using lifelong forests. Reproduced from [23].

For any neurobiological computational element that might implement progressive learning, such
as a neural circuit or even an individual neuron (especially given how computationally complex and
sophisticated an individual neuron can be, see for example [3, 9]), the transfer of information be-
tween each of the composite parts of the learning task hypothesis will be bounded by physiological
constraints. For example, changes in firing rates or signaling routes due to learning would be
bounded by a variant of the optimized refraction ratio theorem, which proves the theoretically
derived ideal for efficient signaling in a geometric network in the context of the refraction ratio.
Application of the theorem sets neurobiologically realistic limits on the rate of progressive transfer
learning. This notion is not part of the original model. But one can construct an extension of
the model that accommodates the fundamental structure-function constraint. For example, pos-
sibly through sequential tasks, where the ensemble of representations corresponds to snapshots
of a system over a time windows, such that each window of time provides constraints about the
extent to which the representation could change. Furthermore, we can learn new things by theo-
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retically and numerically (computationally) analyzing the extended construction that follows the
neurobiologically imposed constraints that we would not be able to otherwise.

Two final comments. First, because the competitive-refractory dynamics model is derived from
direct considerations of the structure-function constraint and the anatomical and neurobiological
considerations responsible for it, a detailed analyses of these ideas will likely facilitate any attempt
at experimental validation of progressive learning in a neurobiological system. For example, can
distinct populations of neurons be identified as voters or deciders in response to specific tasks? It
has been proposed in at least one model that interacting populations of neurons organized into
coupled ’modules’ can evaluate competing sensory information [15]. The dispersion between mod-
ules encodes a confidence measure that the brain can take advantage of in using that information
to make subsequent decisions. Other recent experimental work suggests that both single-neuron
encoding and distributed encoding schemes are used by the brain to vote on and make decisions
about a task [6]. When the brain is initially processing a new input or piece of data, many neurons
are polled in order to generate a good prediction of what the decision should be. But the closer
the brain gets to actually making a decision, the neurons converge and begin to agree on what the
right decision should be. Eventually, as a consensus is reached, each neuron on its own is maxi-
mally predictive. In other words, while the voting and deciding population of neurons is initially
heterogeneous, convergence results in a collective consensus. At that point, polling almost any
individual neuron would tell you the decision the brain has come to. It is a form of neurobiological
partitioning.

Second, other properties associated with the mathematical ideas behind progressive learning
may provide additional insights about the neurobiological mechanisms that implement it. For
example, one of the canonical theorems about the composition of functions states that to preserve
distinctiveness from an input to an outputs when there is an intermediate map (i.e. representation)
between the input and output, there must be distinctiveness preserved in the mapping from the
input to the intermediate representation, but need not be in the mapping from that intermediate
representation to the output. In the context of progressive learning, this implies that as long
as distinctiveness is preserved from the inputs to the their internal representations in the neural
system through the transformer, distinctiveness will also be preserved in the mapping from posterior
distributions to the outputs by the deciders. But need not be distinct in the mapping by voters
from internal representations to posteriors. This is insightful because it means that there may
exist neurobiological processes or set of algorithms that map different inputs to the same internal
representations, thus conserving computational and cellular resources, something that could be
experimentally testable.

4 Towards a systems understanding of the brain

4.1 Intersection with machine learning and artificial intelligence

Beyond neuroscience itself, achieving a systems engineering and theoretical understanding of the
brain offer a path forward for pushing the state of the art towards the next generation of machine
learning and artificial intelligence. Given sufficient convergence between experimental models (e.g.
brain organoids) and data on the one hand, and theoretical and computational ideas on the other,
there is an opportunity to expand the impact of neuroscience on machine learning beyond its
current contributions. A systems neuroscience approach offers an opportunity to advance machine
learning toward functionality, adaptability, and properties closer to animals and humans. Continued
progress in other mathematical and statistical applications, as well as hardware, that have nothing
to do with the brain will also drive the methods forward. But nature has a significant head start
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on us, and the biological brain certainly has a lot to teach us and contribute.
Turning the tables around, theoretical machine learning has the potential to inform the discovery

of brain algorithms. For example, the study of convolution neural networks (CNN’s) and graph
neural networks (GNN’s). However, we propose that such an approach will be successful if the
structural and mathematical design and set up of the artificial networks being investigated are also
appropriately constrained by the physical conditions imposed on the neurobiology.

4.2 Other models and data: The advantages of an inclusive approach

Throughout this paper we have attempted to build a case for the requirement that any computa-
tional model or theory the makes claims about its relevance to how the brain works must be able
to account for the fundamental structure-function constraint. And because of their putative rele-
vance to human brain structure and function, we also argued that human-derived brain organoids
could be an experimental model of the brain capable of guiding the development and testing of
constraint-based mathematical models. One of the unique features of organoids is their ability to
bridge mechanistic neurobiology with higher level cognitive properties and clinical considerations
in the intact human. The kind of parallel basic neurobiology-clinical trial paradigm we are pursing
in the autism study, for example, offers a potential paradigm shift in how mechanistic neurobiology
is viewed in context with clinical effects and outcomes.

While direct relevance to the human brain will be variable, other experimental models offer
the opportunity to ask specific questions that take advantage of each model’s unique properties
which organoids might not share. There are likely aspects of neurobiology that invariant to taxa,
such that considering them in the context of what also happens in an organoid could establish
an abstraction about the wetware. For example, the deterministic and reproducible connectivity
of C. elegans across individuals, or the opportunity to observe and measure the physiology and
metabolic properties of intact zebra fish during behavioral experiments. Rigorous constraint-based
mathematical models that integrate data across experimental models offer the opportunity to gen-
erate insights about how the brain works that no single approach by itself can produce. It is the
epitomy of a collective effort aimed at achieving a systems engineering understanding of the brain.
It offers an opportunity to view neurological, neurodevelopmental, and psychiatric disorders in a
new holistic, and even personalized, way that might produce clinical options that do not yet exist.
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Appendix

The Hodgkin Huxley model. Consider the Hodgkin Huxley model of a neuron. Current
flows in the cable equation are computed along the dominant one dimensional x direction of the
neuron as a function of time. The membrane biophysics, due to the effects of the participating
sodium and potassium ion channels, completely determines the passive spatial and temporal decay
of potentials along the membrane. Explicitly, the change in membrane potential as a function of x
given appropriate boundary conditions is solved to be

Vm(x) =
λ

rL
πa2I0e

−x/λ

for an initial current step I0 at x = 0, membrane radius a, and parametrized membrane resistance
rL. λ represents the space constant, which is the distance over which the potential has decayed to
1/e its original amplitude. This is a critical consideration for the spatial and temporal summation of
post synaptic potentials along the dendritic tree towards reaching the threshold potential necessary
to trigger an action potential at the axon hillock. This spatial-temporal dependency is equally
explicit in the Hodgkin Huxley equations. The membrane potential dynamically depends on the
spatial variable x and propagation latencies at times t. Assuming standard notations and Ohmic
ionic currents, as is typical, the equation that balances the various components of the membrane
potential is given by:

CM
∂VM
∂t

=
a

2rL

∂VM
∂x2

− gK(VM − EK)− gNa(VM − ENa)− gL(VM − EL)

In the solution to its equations, the gating variables ultimately determine the temporal kinetics of
the action potential. If the membrane refractory state associated with the recovery of sodium chan-
nel inactivation is taken into consideration, the conduction velocity of the traveling action potential
can be derived. This reflects the rate at which information can be communicated or transferred
between neurons. We again refer the reader to the standard treatments of the Hodgkin Huxley
model for full details [1, 4, 7, 12].

Competitive-refractory dynamics model. Assume a directed graph G = (V,E) such that the
edge eij is the directed edge from vertex vi to vertex vj . Define the subgraph Hj as the (inverted)
tree graph that consists of all vertices vi with directed edges into vj . Across an entire network
with |V | vertices, there will be the same number of Hj subgraphs (i.e. one for each node in the
network). For each Hj , the model fractionally summates discrete signaling events traveling at
a finite speed sij on edges eij until a threshold is reached and vj fires. But because the model
explicitly considers geometric networks, the offsets in the latencies of arriving signaling events at
vj have a profound effect on the fractional summation. In addition, weights associated with each
arriving signal progressively decay over time, and therefore progressively less contribute less to the
summation at each subsequent time step. This adds a further important dynamical variable to the
fractional summation.

More formally, at an observation time To a signal from any vi may be traveling part way along
an eij with length |eij |at a speed sij , effectively shortening the absolute signal latency τij along
eij . Or it may be delayed in signaling if vi signals some time after To, effectively lengthening τij .
Each vertex vi ∈ Hj(vi) is independent of every other vertex in the subgraph Hj(vi). And as such
different temporal offsets are to be expected depending on how far along a discrete signaling event is
in its propagation along their respective edge eij . Thus, the distance that a discrete signal initiated
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by each vi has traveled along its edge at To is taken into account by defining a temporal offset for
τij , an effective shortening or lengthening of τij relative to To as

τ̄ij = τij + δij where, δij ∈ R

The second key concept is the consideration of an absolute refractory period for the vertex vj by
Rj . This reflects the internal dynamics of vj once a signaling event activates it. For example, the
amount of time the internal dynamics of vj requires to make a decision about an output in response
to being activated, or some reset period during which it cannot respond to subsequent arriving input
signals. There are no restrictions on the internal processes that contribute toward Rj . Since nothing
is instantaneous, the assumption is that once a node activates, it becomes refractory for a period
Rj that progressively decreases towards zero (i.e. a state of not being refractory anymore). Similar
to the consideration of τ̄ij , To, there is likely to be a temporal offset between when signals from
each vi arrive and how far along vj is in its recovery from its refractory period. Furthermore, each
vi ∈ Hj(vi) is statistically independent from every other vi, so that the amount of temporal offset
for each vi vertex signaling vj will be different. Mathematically the model accounts for this in the
following way. Let φj represent a temporal offset from Rj , such that at To

R̄j = Rj − φj where 0 ≤ φj ≤ Rj

R̄j is the effective refractory period. It reflects the amount of time remaining in the recovery from
Rj at the observation time To.

The refradtion ratio, the ratio between the relative refractory period and effective latency
(relative to an observation time To), is then written as

Λij =
R̄j
τ̄ij

This expression is key, because it describes a local rule (at the individual node scale, i.,e. Hj for
every vertex vj) that governs the global dynamics of the network. Although beyond the scope of
this paper, by creating a well ordered set of refraction ratios one can compute the causal order in
which incoming signaling events trigger the activation of any node vj for all participating vi nodes
in Hj .

The last important consideration for our purposes here, is that a theoretical analysis results
in the derivation of a set of (upper and lower) bounds that constrained a mathematical definition
efficient signaling for a structural geometric network running the dynamic model. This produced a
proof of the optimized refraction ratio theorem. If we let G = (V,E) represent a geometric network
consisting of subgraphs Hj(vi). For each vivj vertex pair with a signaling speed sij between vi and
vj , the optimal refraction ratio [Λij ]opt at an observation time To is bounded by

[Λij ]opt = lim
τij→R+

j

Λij when φj and δij = 0 [Upper bound ]

[Λij ]opt ⇒ lim
δij→−φj

Λij when φj = Rj [Lower bound]

Given these bounds then, the optimized refraction ratio is

[Λij ]opt = lim
τij→R̄+

j

R̄j
τij
→ 1

We refer the reader to the original paper for full details and proofs [19].
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Progressive transfer learning model. Progressive learning is an approach that supports trans-
fer learning across tasks in both a forward and backward direction [23]. The core of their argument
relies on being able to evaluate a hypothesis h : X → Y. For the single task case, h is decomposed
into three parts, each with a successive purpose: h(·) = w ◦ v ◦ u(·). Given a X -valued input the
transformer u maps the input into an internal representation X̄ . Following the construction of an
internal representation to the input, the voter v : X̄ → PY|X̄ maps the transformed input data into
a posterior distribution on a response space Y. In the last step, the decider w maps w : PY|X̄ → Y
to an output Y. The model’s core insight and innovation is the construction of ensemble represen-
tations, or grouping, of learned transformations across tasks, which can then be used by deciders on
new tasks. In other words, the transfer of learned information between different tasks contributes
to learning new tasks. To achieve this, assume n input samples produce a set of |Tn| tasks in the
environment Tn. This creates Tn cross-task posteriors. The decider wt for task t combines the votes
across all prior learned tasks to arrive at a final posterior on the output Y. If the function that
computes the combination of prior learned tasks is an average, then the hypothesis for task t′ ht
(expanding the authors’ original notation a bit) would be

ht′(·) = wt′ ◦
1

|Tn|
∑
ti∈Tn

vt ◦ [Ut = {ut(·)|t ∈ Tn}]

When the learner is exposed to an additional new task s, a single task hypothesis hs = w ◦ v ◦u
to s is generated, along with an updated set of cross-task posteriors {vt ◦ us}t∈Tn . Note how in
this notation, t ∈ Tn represents the aggregation of all prior learned tasks, i.e. t′ ∈ Tn in the
above ensemble hypothesis equation ht′ . In their original paper the authors illustrate a number of
applied examples of progressive learning using this model by the use of lifelong forests and networks.
Essentially, a modified decision forest approach that makes use of such ensemble representations.

For any neurobiological computational element that implements this model, such as a neural
circuit or even an individual neuron, the transfer of information between each of the composite
parts of hypothesis h will be bounded by a variant of the optimized refraction ratio theorem. This
sets physiologically realistic limits on the rate of progressive transfer learning that is not part of
the original model itself. The conjecture is that there exits (a provable) extension of the model to
accommodate the fundamental structure-function constraint.

Assume an ensemble ξU of neural elements that is responsible for mapping an input ut or
environment Tn to an encoding representation Ut - which could be an external sensory input or
an internal representation of some element of an inherent internal computation. Leveraging the
theoretical framework of the competitive-refractory dynamics model, let the relative time associated
with the internal transfer of information (message passing) within the parts of ξU and computational
time at an observation time To be R̄U . Let τ̄U→v be the relative time it takes for information transfer
from transformers to voters as a function of the anatomical and physiological processes that invoke
it, also at To. We modify our original notation such that R̄U = RU − φTo . RU reflects the the
dynamical requirements associated with a specific encoding scheme of the input. φTo modulates
the remaining time associated with RU given when one begins to observe or measure the process,
i.e. at time To relative to the history of the system. Similarly, τ̄U→v = τU→v + γU→v, such that
γU→v modulates the absolute transfer time due to the physiology by what remains, referenced to
the observation time To at which the system is measured. A similar set of equations exists between
voters and deciders, namely,

R̄v = Rv − φTo
τ̄v→w = τv→w + γv→w

R̄w = Rw − φTo
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If we assume that the introduction and learning of a new task s, including its integration into
the existing environment of previously learned priors, i.e. into Tn, cannot occur before previously
learned tasks have been similarly integrated, a reasonable requirement given physiological and
causality considerations, then the optimized refraction ratio theorem set bounds on how quickly
progressive learning can take place. Specifically:

lim
τ→R̄U

R̄U
τ
→ 1 when φTo and δU→v = 0 [Upper bound ]

lim
τ→R̄U

R̄U
τ
→ 1 when φTo = RU [Lower bound] (3)

where for simplicity in notation τ here implies τU→v. Similar bounds can be derived for the mapping
from voters to deciders.

Other properties associated with the mathematical ideas behind progressive learning may pro-
vide additional insights about the neurobiological mechanisms that implement it. For example,
one of the canonical theorems about the composition of functions states that If f : A → B and
g : B → C are mappings such that g◦f : A→ C is injective, then f is injective. The theorem proves
that g ◦ f is injective if f is injective, even if g is not. This means that to preserve distinctiveness
from the mapping A → C there must be distinctiveness preserved in the mapping from A → B,
but need not be in the mapping from B → C. In the context of progressive learning, this implies
that as along as distinctiveness is preserved from the inputs to the their internal representations in
the neural system through the transformer u, distinctiveness will also be preserved in the mapping
from posterior distributions PY|X̄ to outputs Y by the deciders w. But need not be distinct in the
mapping by voters from internal representations to posteriors. This is insightful because it means
that there may exist neurophysiological processes or set of algorithms that map different inputs to
the same PY|X̄ , thus conserving computational and cellular resources. This is something that could
be experimentally testable.
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