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Although a number of studies have explored deep learning in neuroscience, the application
of these algorithms to neural systems on a microscopic scale, i.e. parameters relevant to
lower scales of organization, remains relatively novel. Motivated by advances in whole-
brain imaging, we examined the performance of deep learning models on microscopic
neural dynamics and resulting emergent behaviors using calcium imaging data from the
nematode C. elegans. As one of the only species for which neuron-level dynamics can be
recorded, C. elegans serves as the ideal organism for designing and testing models
bridging recent advances in deep learning and established concepts in neuroscience. We
show that neural networks perform remarkably well on both neuron-level dynamics
prediction and behavioral state classification. In addition, we compared the
performance of structure agnostic neural networks and graph neural networks to
investigate if graph structure can be exploited as a favourable inductive bias. To
perform this experiment, we designed a graph neural network which explicitly infers
relations between neurons from neural activity and leverages the inferred graph structure
during computations. In our experiments, we found that graph neural networks generally
outperformed structure agnostic models and excel in generalization on unseen organisms,
implying a potential path to generalizable machine learning in neuroscience.
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1 INTRODUCTION

Constructing generalizable models in neuroscience poses a significant challenge because systems in
neuroscience are typically complex in the sense that dynamical systems composed of numerous
components collectively participate to produce emergent behaviors. Analyzing these systems can be
difficult because they tend to be highly non-linear in how they interact, can exhibit chaotic behaviors
and are high-dimensional by definition. As such, indistinguishable macroscopic states can arise from
numerous unique combinations of microscopic parameters i.e., parameters relevant to lower scales of
organization. Thus, bottom-up approaches to modeling neural systems often fail since a large
number of microscopic configurations can lead to the same observables (Golowasch et al., (2002);
Prinz et al., (2004)).

Because neural systems are highly degenerate and complex, their analysis is not amenable to many
conventional algorithms. For example, observed correlations between individual neurons and
behavioral states of an organism may not generalize to other organisms or even to repeated
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trials in the same individual (Frégnac (2017); Churchland et al.,
(2010); Goldman et al., (2001)). Hence, individual variability of
neural dynamics remains poorly understood and a fundamental
obstacle to model development as evaluation on unseen
individuals often leads to subpar results. Nevertheless, neural
systems exhibit universal behavior: organisms behave similarly.
Motivated by the need for robust and generalizable analytical
techniques, researchers recently applied tools from dynamical
systems analysis to simple organisms in hopes of discovering a
universal organizational principle underlying behavior. These
studies, made possible by advances in whole-brain imaging,
reveal that neural dynamics live on low-dimensional manifolds
which map to behavioral states [Prevedel et al., (2014); Kato et al.,
(2015)]. This discovery implies that although microscopic neural
dynamics differ between organisms, a macroscopic/global
universal framework may enable generalizable algorithms in
neuroscience. Nevertheless, the need for significant hand-
engineered feature extraction in these studies underscores the
potential of deep learning models for scalable analysis of neural
dynamics.

In this work, we examine the performance and generalizability
of deep learning models applied to the neural activity of C. elegans
(round worm/nematode). In particular, C. elegans is a canonical
species for investigating microscopic neural dynamics because it
remains the only organism whose connectome (the mapping of
all 302 neurons and their synaptic connections) is completely known
and well studied [White et al., (1986); Bargmann andMarder (2013);
Varshney et al., (2011); Cook et al., (2019)]. Furthermore, the
transparent body of these worms allows for calcium imaging of
whole brain neural activity which remains the only imaging
technique capable of spatially resolving the dynamics of
individual neurons (Wen and Kimura, 2020). Leveraging these
characteristics and insight gained from previous studies, we
developed deep learning models that bridge recent advances in
neuroscience and deep learning. Specifically, we first demonstrate
state-of-the-art performance for classifying motor action states-e.g.,
forward and reverse crawling-of C. elegans from calcium imaging
data acquired in previous works. Next, we examine the
generalization performance of our deep learning models on
unseen worms both within the same study and in worms from a
separate study published years later.We then show that graph neural
networks exhibit a favourable inductive bias for analyzing both
higher-order function and microscopic/neuron-level dynamics in C.
elegans.

2 BACKGROUND

In this section we discuss recent advances in neuroscience and
machine learning upon which we build our model and
experiments.

2.1 Universality/Generalizability in
Neuroscience
Themotor action sequence ofC. elegans is one of the only systems
for which experiments on whole-brain microscopic neural

activity may be performed and readily analyzed. As such,
numerous efforts have focused on building models that can
accurately capture the hierarchical nature of neural dynamics
and resulting locomotive behaviors [Sarma et al., (2018); Gleeson
et al., (2018)]. Taking advantage of this, Kato et al., (2015)
investigated neural dynamics corresponding to a pirouette, a
motor action sequence in which worms switch from forward
to backward crawling, turn, and then continue forward crawling.
Their analysis showed that most variations ( ∼ 65%) in neural
dynamics can be expressed by three components found through
principal component analysis (PCA) and that neural dynamics in
the resulting latent space trace cyclical trajectories on well-
defined low dimensional manifolds corresponding to the
motor action sequence (Supplementary Figure S1). By
identifying individual neurons, an experimental feat, these
authors further determined that these topological structures in
latent space were universally found among all five worms imaged
in their study.

Following Kato et al., (2015), the authors published several
studies focusing on global organizational principles of C. Elegant
behavior [Nichols et al., (2017); Kaplan et al., (2020); Skora et al.,
(2018)]. Building on two of these works, Brennan and Proekt
(2019) found consistent differences between each individual’s
neural dynamics, precluding the use of established dimensional
reduction techniques. For example, among 15 neurons uniquely
identified among all 5 worms, only 3 neurons displayed
statistically consistent behavior (Figure 1D). Examples of
inconsistent behavior for unequivocally identified neurons
(ALA and RIML) are shown in Figure 1C where the average
of ALA’s activity fails to resemble the behavior of any worm and
where RIML’s activity is consistent among all animals during
dorsal turns, but inconsistent during reverse crawling. Resulting
from these discrepancies, topological structures identified by
performing PCA on each worm’s neural activity were no
longer observed when data from all worms was pooled together.

To address this issue, Brennan and Proekt (2019) introduced a
new algorithm, Asymmetric Diffusion Map Modeling (ADMM),
which maps the neural activity of any worm to an universal
manifold (Figure 2). To achieve this, ADMM first performs time-
delay embedding of neural activity into phase space. Next, a
transition probability matrix is constructed by calculating
distances between points in phase space using a Gaussian
kernel centered on the subsequent timestep. Finally, this
asymmetric diffusion map is used to construct a manifold
representative of neural activity. Contrasting conventional
dimensional reduction techniques, ADMM allowed
quantitative modeling by mapping neural activity from the
manifold, and enabled the prediction of motor action states up
to 30s ahead. Despite its success, the algorithm heavily relies on
hyperparameters, such as embedding parameters, which are
difficult to justify and tune.

2.2 Graph Neural Networks
Graph Neural Networks (GNNs) are a class of neural networks
that explicitly use graph structure during computations through
message passing algorithms where features are passed along edges
between nodes and then aggregated for each node [Scarselli et al.,
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(2009); Gilmer et al., (2017)]. These networks were inspired by
the success of convolutional neural networks in the domain of
two-dimensional image processing and failures when extending
conventional convolutional networks to non-euclidean domains
Battaglia et al., (2018). In essence, because graphs can have
arbitrary structure, the inductive bias of convolutional neural
networks [equivariance to translational transformations (Cohen
and Welling, 2016)] often breaks down when applied to graphs.
Addressing this issue, an early work on GNNs showed that one-
hop message passing approximates spectral convolutions on

graphs [Kipf and Welling (2016)]. Subsequent works have
examined the representational power of GNNs in relation to
the Weisfeiler-Lehman isomorphism test Xu et al., (2018) and
limitations of GNNs when learning graph moments [Dehmamy
et al., (2019)]. From an applied perspective, GNNs have been
widely successful in a wide variety of domains including relational
inference [Kipf et al., (2018); Löwe et al., (2020); Raposo et al.,
(2017)], node classification Kipf and Welling (2016) Hamilton
et al., (2017), point cloud segmentation (Wang et al.,, 2019), and
traffic forecasting Yu et al., (2018); Li et al., (2018).

FIGURE 1 | (A) Calcium signals recorded in one animal for ∼ 15 min by Kato et al., (2015). Each row represents a single neuron. The top 15 rows (above the red
line) correspond to neurons unambiguously identified in all animals (shared neurons) (B) Sample trace with corresponding behavioral state colored (C) Neural dynamics
of two neurons for specific behavior states. Colored solid lines are the mean activity for each animal, and the black dashed line is the mean activity for all animals. Shaded
colored regions show 95% confidence intervals (D) Probabilities that neural dynamics from different individuals were drawn from the same distribution (E) Attempt
by Brennan and Proekt (2019) to decode onset of backwards locomotion using neural dynamics for each animal and averaged neural dynamics across other four
animals. Reproduced with permission from Brennan and Proekt (2019).
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2.3 Relational Inference
Relational inference remains a longstanding challenge with early
works in neuroscience seeking to quantify correlations between
neurons Granger (1969). Modern approaches to relational
inference employ graph neural networks as their explicit
reliance on graph structure forms a relational inductive bias
[Battaglia et al., (2016); Battaglia et al., (2018)]. In particular,
our model is inspired by the Neural Relational Inference model
(NRI) which uses a variational autoencoder for generating edges
and a decoder for predicting trajectories of each object in a system
[Kipf et al., (2018)]. By inferring edges, the NRI model explicitly
captures interactions between objects and leverages the resulting
graph as an inductive bias for various machine learning tasks.
This model was successfully used to predict the trajectories of
coupled Kuramoto oscillators, particles connected by springs, the
pick and roll play from basketball, and motion capture
visualizations. Subsequently, the authors developed Amortized
Causal Discovery, a framework based on the NRI model which
infers causal relations from time-dependent data Löwe et al.,
(2020).

2.4 Deep Learning in Neuroscience
With the success of convolutional neural networks, researchers
successfully applied deep learning to numerous domains in
neuroscience Glaser et al., (2019) including MRI imaging
Lundervold and Lundervold (2019) and connectomes Brown
and Hamarneh (2016) where algorithms can predict disorders
such as autism Brown et al., (2018). Further leveraging the explicit
graph structure of neural systems, several studies have
successfully applied GNNs on various tasks such as annotating
cognitive state Zhang and Bellec, 2019, and several frameworks
based on graph neural networks have been proposed for
analyzing fMRI data [Li and Duncan (2020); Kim and Ye (2020)].

Similarly, brain-computer interfaces (BCI) are a well-studied
field related to our work as they focus on decoding macroscopic
variables from measurements of neural activity. These studies
generally involve fMRI or EEG data, which characterize neural
activity on a population level, to varying amounts of success
[Bashivan et al., (2015); Kwak et al., (2017); Mensch et al., (2017);
Makin et al., (2020)]. Regardless, a challenge for the field is
developing generalizable algorithms to individuals unseen during
training Zhang et al., (2019).

3 MODEL

In this section, we first present the general framework of our
behavioral state classification and trajectory prediction models.
Next, we detail the implementation of our neural network
models.

3.1 Framework
We define the set of trajectories (calcium imaging traces) for each
worm as Xα � {x1, . . . , xn, . . . , xN }α where α denotes the label of
the individual, n the name of the neuron, N the total number of
neurons, and xn the feature vector of the neuron. In our case,
xn ∈ RT×2 corresponds to time-dependent normalized calcium
traces and their derivatives for each neuron where T is the total
number of timesteps. Likewise, xn,t ∈ R2 corresponds to the
features of neuron n at timestep t. Finally, the behavioral
states of an individual are encoded as aα �
(a1, . . . , at , . . . , aT )α where a behavioral state a is assigned for
each timestep t.

Separate models were developed for each task: behavioral state
classification and trajectory prediction. In both cases, data from a
worm α is structured as a temporal graph Gα �

FIGURE 2 | (A) Rendering of calcium imaging experiment where activity of neurons in the head of the worm is recorded. Colored arrows show main motor action
behavioral states (B) and (C) Resulting manifold from Brennan and Proekt (2019) (B)Manifold constructed from activity of four worms with colored lines indicating neural
activity of fifth worm (C)Manifold constructed from neural activity of uniquely identified neurons (n � 15) shared among all five worms. Black arrows correspond to cyclical
transition of motor action sequence and colors correspond to motor action states. Modified with permission from Brennan and Proekt (2019).
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(G1, . . . ,Gt , . . . ,GT)α (Figure 3A) where each timestep is
represented by a static graph whose nodes correspond to
neurons. Following the notation above for worm α, the
trajectories of each neuron’s calcium traces are encoded as
node features xn, and the behavioral state of the worm is
interpreted as a graph feature at . For behavioral state
classification, our model consists of the following:

Hα,t � f (Xα,t), (1)

pα,t � softmax(Hα,t), (2)

âα,t � argmax(pα,t). (3)

where Xα,t corresponds to node feature vectors for worm α at
timestep t, f is an universal approximator/neural network model
(described in the next section), Hα,t ∈ Rk corresponds to
embedded features, pα,t is the probability that the worm is in
one of k motor states (Figure 4D), and âα,t is the most probable/
predicted state.

For trajectory prediction, we developed a Markovian model
for inferring trajectories of a consecutive timestep:

Hα,t � f (Xα,t), (4)

X̂α,t+1 � Xα,t +Hα,t , (5)

where f is the same as before, Hα,t is the predicted change of the
trajectory and can be interpreted as ΔX̂α,t , and X̂α,t+1 is the predicted
value of the subsequent timestep.When predictingmultiple timesteps,
the predicted value of the previous timestep is substituted forXα,t .We
also experimented with non-Markovian models (RNNs) for which a
hidden state is included for each timestep.

The structure of our framework allows us to substitute various
models for f. While we include results from several neural
networks, we focus on two representative models: a multi-
layer perceptron (MLP) agnostic to graph structure
(Figure 3B) and a graph neural network (GNN) which
explicitly computes on an inferred graph (Figure 3C).

3.2 Neural Network Models f: MLP and GNN
OurMLPmodel aggregates (sums or concatenates) the features of
a graph and feeds the aggregated features into a 2-layer MLP
neural network:

Hout � ggraph:mlp(aggregation(x1, . . . , xn, . . . , xN)), (6)

where ggraph:mlp is a 2-layer MLP. Contrasting the MLPmodel, our
GNN relies on message passing between connected nodes and
contains an encoder for edge weights Aij:

V � gnode(X), (7)

Eij � gedge(aggregation(vi, vj)), (8)

Aij � sigmoid(Eij), (9)

where in Eq. 7, V � (v1, . . . , vn, . . . , vN) corresponds to the
embedding of each node’s features through the MLP gnode.
Next, the edge embedding Eij is computed by aggregating all
pairs of node embeddings followed by the MLP gedge. Finally,
applying the sigmoid function to the edge embedding Eij
produces edge weights Aij normalized between 0 and 1. A can
be interpreted as an inferred weighted adjacency matrix where Aij

denotes the edge weight between nodes i and j such that i � j

FIGURE 3 | (A) Visualization of temporal graph. Inset shows xn plotted against twhere the top is the calcium trace, and the bottom is its derivative. The dashed line
intercepts the feature vectors at t′ � t + 1 and denotes xt+1n (B) and (C) are simplified visualizations of the MLP and GNN models respectively.
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denotes a self edge. The edge weights either dynamically change
in each timestep’s inferred graph Gt or remain fixed for the whole
temporal graph G of an individual worm. If the edges are static for
the temporal graph, the aggregation step in Eq. 8 also averages
hidden features across all timesteps such that
V � 1

T∑
 T
t�1gnode(Xt). Note that in this case, the edge encoder is

given all timesteps Xα in Eqs 1, 4 instead of just one timestep.
After edges are encoded, the GNN performs a message passing

Eq. 10 and aggregation step Eq. 11:

M � AX, (10)

Hout � ggraph:gnn(aggregation(M)) (11)

As mentioned before, our MLP and GNN models can be
subsituted for f in Eqs 1, 4. Depending on the task, the
dimension of Hout for the MLP Eq. 6 and GNN Eq. 11
models differs. For behavioral state classification, Hout ∈ Rk

whereas for trajectory prediction, dim(Hout) � dim(Xα,t) such
that Hout ∈ RN×2.

Theoretically, an arbitrary number of message passing steps
can be implemented; however, we did not find any improvements
when using more than one step. In addition, we find that

performance improves when using concatenation instead of
summation during the aggregation step.

4 EXPERIMENTS AND DATA

Our experiments were performed with data acquired in Kato
et al., (2015) and Nichols et al., (2017). We summarize various
details about the data in this section; however, we direct the
reader to each respective publication for specific experimental
details.

4.1 Calcium Imaging
Kato et al., (2015) showed that neural activity corresponding to
the motor action sequence lives on low dimensional manifolds.
To record neuron level dynamics, they performed whole-brain
genetically encoded Ca2+ imaging with single-cell-resolution and
measured ∼ 100 neurons for around 18 min. They then
normalized each calcium trace by peak fluorescence and
identified neurons using spatial position and previous
literature (Altun et al.,, 2002–2020). Aside from imaging freely
moving worms, the authors also examined robustness of

FIGURE 4 | (A and B) Classification accuracy of our GNN and MLP models where black vertical lines show statistical spread (A): Classification of seven motor
action states within the Kato dataset (B): Classification of four motor action states on both the Kato and Nichols datasets (C) Confusion matrix. Percent occurrence of
predicted states against labeled states when evaluating on the Nichols dataset (D) Mapping of behavioral states between the Kato and Nichols dataset.
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topological features to sensory stimuli changes, hub neuron
silencing, and immobilization. For simplicity, we limited our
experiments to data collected on freely moving worms.

Nichols et al., (2017) focused on differences in neural activity
of C. elegans while awake or asleep and studied two different
strains of worms, n2 (11 total worms) and npr1 (10 total worms).
Because experiments in both studies were performed by the same
group, most experimental procedures were similar, allowing us to
easily process data to match the Kato dataset. While this dataset
includes imaging data of each worm during quiescence, for
consistency with the Kato dataset, we only included data
before sleep was induced. Furthermore, we pooled results for
both strains of worms as we did not notice any statistically
relevant differences between them.

4.2 Dataset Enlargement
Although our data for each worm is relatively small
( ∼ 3,000–4,000 timesteps), our datasets contained calcium
traces from numerous worms. In total, 5 worms were measured
in Kato et al., (2015) and 21 worms weremeasured in Nichols et al.,
(2017). Taking advantage of the large number of wormsmeasured,
we experimented with dataset enlargement where our models were
trained on pooled data from different numbers of worms in the
Kato dataset. Similarly, we pooled data from all 21 worms from the
Nichols dataset; however, we use this dataset only during
evaluation-i.e., the model never sees this dataset in training. In
this way, we define the “seen” population as worms whose data was
seen in training and the “unseen” population as worms the model
did not see during training. More details about how datasets were
used in our experiments can be found in Section 4.2.

To perform dataset enlargement, we separately trained the
models on each worm in the seen population for each epoch. In
other words, we independently optimized the loss function for
each worm in every epoch. We followed this procedure such that
batch normalization was separately performed on each worm’s
features. This technique was motivated by experiments where
batch normalization on data from individual worms improved
both test set and generalization accuracy. In contrast, performing
batch normalization on pooled data from all worms greatly
decreased model performance.

4.3 Data Processing
Wenormalized the calcium trace and its derivative of each neuron to
[0,1]. Normalization was performed for the entire recorded calcium
trace of a worm instead of within each batch because the relative
magnitudes of the traces have been found to contain graded
information about the worm’s behavioral state, (e.g. crawling speed).

For the seen population, we separated each calcium trace of
approximately 3,000–4,000 timesteps into batches of 8 timesteps
where each timestep corresponds to roughly 1/3 of a second. We
chose batch sizes of 8 timesteps because visualization of calcium traces
showed that most local variations occur within this time frame.
Moreover, 8 timesteps roughly corresponds to 3 s which is about
the amount of time a worm needs to execute a behavioral change.
Finally, the batches were shuffled before being divided into 10 folds
later used for cross-validation, ensuring that each fold is representative
across the whole dataset.

When evaluating on the unseen population, we treat the data
differently for each task. For behavioral classification, we infer the
behavioral state of the system using data from one timestep. As
such, we do not split the data and simply run the model separately
on each timestep of the worm’s calcium traces. In contrast, for
trajectory prediction, we split the calcium traces into batches of 16
timesteps and evaluate the model on all batches.

To compare with previous works, we performed our
experiments on uniquely identified neurons between the
datasets that we investigated. Identifying specific neurons is an
experimental challenge, and as such, only a small fraction of
neurons were unequivocally labeled. A total of 15 neurons were
uniquely identified between all 5 worms measured in the Kato
dataset: (AIBL, AIBR, ALA, AVAL, AVAR, AVBL, AVER, RID,
RIML, RIMR, RMED, RMEL, RMER, VB01, VB02). In addition,
the Nichols dataset contained data from 21 worms with 3
uniquely identified neurons shared among all worms in both
datasets: (AIBR, AVAL, VB02).

5 RESULTS

Following Brennan and Proekt (2019), we used data from Kato
et al., (2015) for training/evaluating our models and data from
Nichols et al., (2017) as an extended evaluation set. Because whole
brain imaging is incredibly difficult, our datasets were relatively
small. To address this, we experimented with dataset enlargement
(Section 4.1.2) by combining data from multiple worms in the
Kato dataset during model training. For all experiments, we
performed 10-fold cross validation on all permutations of
worms in our training set. More details, along with
supplemental experiments, can be found in the Supplementary
Information.

5.1 Behavioral State Classification
Our first experiment compared the performance of our models to
state-of-the-art results reported in Brennan and Proekt (2019).
Specifically, this experiment involved the classification of only
twomotor action states, forward and reverse crawling. Along with
our models described above, we also experimented with a support
vector machine (SVM) and a GNN which computes with edges
derived from the physical connectome (White et al.,, 1986). In
particular, we incorporated the connectome into our model to
investigate whether physical/structural connections between
neurons can serve as a favourable inductive bias for our GNN.
Our results are shown in Table 1 where “Seen Population”
denotes test set accuracy after training on the same worm and
“Unseen Population” denotes evaluation/generalization accuracy
on worms unseen during training.

Our deep learning models clearly outperformed the SVM and
state-of-the-art results, demonstrating the ability of our models to
successfully classify behavioral states and generalize to other
worms. Interestingly, the SVM matched the performance of
our deep learning models on the seen population; however, its
generalization performance on unseen individuals was
significantly worse than our deep learning models. As such,
the SVM distinctly illustrates challenges of individual

Frontiers in Artificial Intelligence | www.frontiersin.org February 2021 | Volume 4 | Article 6183727

Wang et al. Generalizable Machine Learning Using GNNs

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


variability for model development in neural systems despite the
simplicity of our experiments which involve the same set of
unequivocally identified neurons. Similarly, our GNN using edges
derived from the connectome performed well on the seen
population but generalized worse than when using inferred
edges. We hypothesize that the detrimental effect of using the
connectome may be attributed to the distinction between
inferred/functional and structural connectivity. In particular,
the connectome maps physical connections between neurons
which is generally conserved between different individuals. In
contrast, individual variability of neural activity implicitly implies
that the inferred/functional connectivity is unique to individuals
(Supplementary Section S1.4.3).

Following the previous experiment, we applied our MLP and
GNNmodels to the harder task of classifying all behavioral states
labeled in the Kato dataset (Figure 4A). Within this dataset, 7
states were labeled: Forward Crawling, Forward Slowing, Reverse
1, Reverse 2, Sustained Reverse Crawling, Dorsal Turn, and
Ventral Turn. In comparison to the Kato dataset, only 4 states
were labeled in the Nichols dataset: reverse crawling, forward
crawling, ventral turn, and dorsal turn. For compatibility, we
mapped the 7 states of the Kato dataset to 4 states of the Nichols
dataset when using the Nichols dataset as an extended evaluation
set (Figure 4D).

Despite the harder task of classifying 7 states, our models
achieved a classification accuracy of ∼ 92% on the same worm
(Figure 4A). Moreover, our GNN trained on three worms in
the Kato dataset generalized with an accuracy of 87%
(Figure 4B) when classifying 4 states on the remaining
unseen worms. This substantially exceeds the performance
of our MLP model and Brennan and Proekt (2019) who
report a 81% cross-animal accuracy on two states.
Nevertheless, both MLP and GNN models generalized
equally well ( ∼ 70%) to the 21 unseen worms of the Nichols
dataset. These experiments consistently demonstrate that our
GNN exceeds the performance of state-of-the-art techniques
and also often exceeds the performance of our baseline
MLP model.

5.2 Neuron-Level Trajectory Prediction
For trajectory prediction, we predicted each neuron’s calcium
trace and its derivative (normalized to [0,1]) for 8 timesteps
during training (seen population) and 16 timesteps during
evaluation/validation (unseen population). While training our
Markovian models, scheduled sampling was performed to
minimize the accumulation of error (Bengio et al.,, 2015).
When evaluating on the unseen population, the model was

given one timestep as the initial condition after which the
model predicts 16 timesteps. In addition to our Markovian
models, we also experimented with RNN implementations
trained with burn-in periods of four timesteps (12 timesteps
during training and 20 timesteps during evaluation). Our
experiments primarily focused on generalization performance
of our models on the extended evaluation/Nichols dataset
(Figure 5).

Predicting neuron-level trajectory using deep learning is
fairly novel since advances in whole-brain imaging are
recent and limited to few organisms. Nevertheless, neural
systems generically fall under the category of dynamical
systems where each neuron is described by a differential
equation such that neural activity can be modeled as a
system of coupled differential equations. Under this
formulation, the task of trajectory prediction involves
learning the underlying physical laws in order to predict the
time evolution of the system. To quantify the predictive power
of our models, we evaluated the mean squared error (MSE) of
each prediction timestep relative to the true trajectory. In the
context of our Markovian model, this metric measures the error
of the predicted transition matrix which time evolves the state
of the system and, by extension, demonstrates the ability of our
models to learn the underlying physical laws of the dynamical
system.

Several challenges limited the predictive power of our models.
Most prominently, our system is inherently non-linear and
potentially chaotic, a fact further exasperated by the nature of
calcium imaging which is notoriously noisy and an indirect
measurement of neural activity. In addition, our datasets are
relatively small in spite of our dataset enlargement technique.
Resulting from these challenges, the performance of our model is
poor, especially in comparison to that of models in data
assimilation which leverage a priori knowledge of the
dynamical system (). Nevertheless, inspecting the MSE as a
function of prediction step (Figure 5) reveals that our models
are able to learn how the system transitions up to a short
timescale. Moreover, increasing the number of worms
included during training (dataset enlargement) also improved
generalization performance of our MLP and GNN models.
Perhaps most surprising, our Markovian GNN outperformed all
MLP models and their derived RNN variants. We attribute this
result to the largely deterministic nature of neural dynamics,
characterized by sparse bifurcations on the latent manifold, and
the inductive bias of GNNs. As a result, given 1 timestep, our GNN
outperformed all other models including RNN variants which were
given 4 burn-in timesteps. Therefore, we conclude that our GNN

TABLE 1 | Classification accuracy of forward and reverse crawling.

Seen population Unseen population (kato) Unseen population (nichols)

Brennan and Proekt (2019) 83 81 —

SVM 98.8 ± 0.4 82.8 ± 7.6 79.0 ± 11.7
MLP 99.3 ± 0.6 93.9 ± 10.3 88.9 ± 11.4
GNN (connectome) 99.5 ± 0.6 96.8 ± 4.3 85.5 ± 12.9
GNN 99.5 ± 0.5 97.7 ± 3.1 95.5 ± 6.1
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displays a favourable inductive bias in contrast to graph-agnostic
models on the task of predicting microscopic dynamics.

6 DISCUSSION

For both tasks, our GNN consistently matched or exceeded our
MLP model which we accredit to its favourable inductive bias.
Kato et al., (2015) established that projecting neural dynamics
onto three principal components for each worm reveals universal
topological structures; however, attempts to project neural
dynamics onto shared principal components of all worms
failed to display any meaningful structure. Thus, variability in
each worm’s neural activity, corresponding to low dimensional
manifolds in latent space, is represented by different linear
combinations of neurons. In other words, relevant topological
structures in latent space are loosely related by linear
transformations of node features. We speculate that our
GNN’s performance stems from its explicit structure of
message passing along inferred edges which is analogous to
learning linear transformations of node features (Eq. 10).
Based on our experimental results, we further speculate that
this inductive bias proves favourable on both microscopic and
macroscopic machine learning tasks in neural systems.

Interestingly, our model’s performance was not significantly
impacted by using 3 neurons ( ∼ 1% of all neurons) instead of 15
( ∼ 5% of all neurons). This is not surprising because neurons
strongly coupled to the motor action sequence retain most
information (Gao and Ganguli, 2015), a fact consistent with
Brennan and Proekt (2019) who found that strategically
choosing 1 neuron retains ∼ 75% of the information
contained in the larger set of 15 neurons.

Finally, as a critical question, we ask whether our model’s
performance stems from choosing a stereotyped organism that
is well studied and biologically simple, or if our results imply a
path toward generalizable/universal machine learning in neural
systems. While the neurophysiology of C. elegans is quite

complex, the motor action sequence we studied is relatively
simple, especially in comparison to other organisms and
cognitive functions. Moreover, organisms are adaptive and
capable of learning new behavior, a fact not represented in
our dataset. However, a recent astounding study Gallego et al.,
(2020) measured neural dynamics in monkeys trained to
perform action sequences and determined that learned latent
dynamics live in low-dimensional manifolds that were
conserved throughout the length of the study. By aligning
latent dynamics, their model accurately decoded the action
of monkeys up to two years after the model was trained despite
changes in biology, (e.g. neuron turnover, adaptation to
implants). Consequently, we posit that techniques similar to
those used in our model may broadly apply to more complex
organisms and functions.

7 CONCLUSION

In this study, we examined the ability of neural networks to
classify higher-order function and predict neuron level dynamics.
In addition, inspired by global organizational principles of
behavior discovered in previous studies, we demonstrated the
ability of neural networks to generalize to unseen organisms.
Specifically, we first showed that our models exceed the
performance of previous studies in behavioral state
classification of C. elegans. Next, we found that a simple MLP
performs remarkably well on unseen organisms. Nevertheless,
our graph neural network, which explicitly learns linear
transformations of node features, matched or exceeded the
performance of graph agnostic models in all experiments.
These experiments demonstrate that our models are capable of
successful evaluation on unseen organisms, both within the same
study, and in a separate experiment spaced years apart. Finally,
our results show that dataset enlargement through the inclusion
of more individuals can significantly improve generalization
performance in microscopic neural systems.

FIGURE 5 | (A) Mean squared error (MSE) of the GNN and various MLP models evaluated on the Nichols dataset. All models were trained using data from one
worm or five worms in the Kato Dataset (B) Table of mean MSE values for all models for 1, 8, and 16 timesteps.
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We note that our results of generalization on both higher-
order functions and neuron-level dynamics (macroscopic and
microscopic) suggests wide applicability of our technique to
numerous machine learning tasks in neuroscience and
hierarchical dynamical systems. A promising research
direction is the hierarchical relationship between neuron-level
and population-level dynamics. Breakthroughs in this direction
may inform machine learning models working with
population-level functional and imaging techniques, such as
EEG or fMRI, which are readily available and widespread. In
addition, in this study, we only focused on simple machine learning
tasks and imaging data taken under similar experimental conditions.
Further studies may involve more complex tasks such as those
involving graded information in neural dynamics, changes in
sensory stimuli, acquisition of learned behaviors, and higher-order
functions comprised of complicated sequences of behavior. From a
machine learning perspective, the development of a recurrent graph
neural network for the edge encoder with a suitable attention
mechanism may aid model generalization. Additional work is also
needed in examining and improvingmodel performance on arbitrary
sets of neurons as neuron identification is experimentally challenging
and limited to small systems.
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