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Despite advancements in the development of cell-based in-vitro neuronal network

models, the lack of appropriate computational tools limits their analyses. Methods

aimed at deciphering the effective connections between neurons from extracellular spike

recordings would increase utility of in vitro local neural circuits, especially for studies of

human neural development and disease based on induced pluripotent stem cells (hiPSC).

Current techniques allow statistical inference of functional couplings in the network but

are fundamentally unable to correctly identify indirect and apparent connections between

neurons, generating redundant maps with limited ability to model the causal dynamics

of the network. In this paper, we describe a novel mathematically rigorous, model-free

method to map effective—direct and causal—connectivity of neuronal networks from

multi-electrode array data. The inference algorithm uses a combination of statistical

and deterministic indicators which, first, enables identification of all existing functional

links in the network and then reconstructs the directed and causal connection diagram

via a super-selective rule enabling highly accurate classification of direct, indirect, and

apparent links. Our method can be generally applied to the functional characterization

of any in vitro neuronal networks. Here, we show that, given its accuracy, it can

offer important insights into the functional development of in vitro hiPSC-derived

neuronal cultures.

Keywords: neuronal network, effective connectivity, functional connectivity, apparent connectivity, correlation,

MEA, iPSC

1. INTRODUCTION

In vitro cultures of primary neurons can self-organize into networks that generate spontaneous
patterns of activity (Segev et al., 2001; Wagenaar et al., 2006; Chiappalone et al., 2007), in some
cases resembling aspects of developing brain circuits (Gutnick et al., 1982; Meister et al., 1991). The
emergent functional states exhibited by these neuronal ensembles have been the focus of attention
for many years (Eckmann et al., 2007; Yuste, 2015) as they can be used to investigate principles
that govern their development and maintenance (Marom and Shahaf, 2002; Opitz et al., 2002) and
to produce biological correlates for neural network modeling (Churchland and Sejnowski, 1992;
Sporns et al., 2005). The introduction of human induced-pluripotent stem cell (hiPSC) technologies
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(Takahashi et al., 2007; Yu et al., 2007) opened the possibility to
generate in vitro neuronal networks in neurotypical (Odawara
et al., 2014; Kirwan et al., 2015), as well as patient-specific
genetic backgrounds (Brennand et al., 2011; Wainger et al.,
2014; Woodard et al., 2014; Canals et al., 2015; Nageshappa
et al., 2015; Sarkar et al., 2018), demonstrating the potential to
reproduce key molecular and pathophysiological processes in
highly controlled, reduced, experimental models that enable the
study of neurological disorders and the discovery and testing of
drugs, especially in the context of the individual patient (Trujillo
et al., 2016; Fink and Levine, 2018; Silva and Haggarty, 2019).

One common approach to obtain information from in
vitro neuronal networks is to record their activity via multi-
electrode array (MEA) or calcium fluorescence imaging and
then use network activity features to describe their physiology.
One main limitation, however, is that these high-dimensional
data, which report about the information representation in the
network, do not translate into a clear understanding of how
this representation was produced and how it emerged based on
neuronal connectivity (de Abril et al., 2018). The synchronization
of spontaneous spike trains among different MEA sites or
neurons, also referred to as network bursting, is an example
of observed neural behaviors widely reported in the literature.
The generation of network bursting in an in vitro neuronal
culture is evidence that the neurons are synaptically connected.
However, the extracellular nature of the MEA recording does
not provide information about how neurons are connected and
how signals propagate between them, such that computational
analyses are necessary to reconstruct their complex dynamic
patterns and relate their emergence to the underlying wiring
diagram (Sporns et al., 2005). However, this kind of analysis
presents several challenges as it requires not only identification of
functional relationships between cells, but also reconstruction of
the dynamic causality (i.e., the knowledge of which neuron fires
first and affects another one) between directly linked neurons
that are simultaneously involved in several different signaling
pathways. This defines the difference between functional and
effective connectivity inference: the first only reports about
statistical dependencies between cells’ activities without giving
any information about specific causal and direct effects existing
between two neurons (Wang et al., 2014); the second attempts
to capture a network of effective—direct and causal—effects
between neural elements (Sporns, 2013b).

Model-based approaches have been proposed for inference
of effective connectivity (Makarov et al., 2005; de Abril et al.,
2018). Among them, dynamic causal modeling (DCM) (Friston
et al., 2003) and structural equation modeling (McLntosh and
Gonzalez-Lima, 1994) variants have shown best performances.
Model-based methods grounded in Ising-like models, which
include maximum entropy inference (Schneidman et al., 2006)
and maximum likelihood variants [“kinetic Ising models” or,
more generally, generalized linear models (GLMs)] (Hertz et al.,
2011; Roudi et al., 2015), are also worth mentioning. However,
these methods estimate the effective connectivity of a measured
neuronal network by explicitly modeling the data generation
process, i.e., only the connectivity of a simulated network model
is inferred without any theoretical guarantee about its accuracy

and its ability to correctly estimate the connectivity of the
biological network (Wang et al., 2014; de Abril et al., 2018).

Because of this limitation, descriptive, model-free approaches
are usually preferred as they are easy to implement, rely on
a limited number of assumptions that are directly related to
the investigated neuronal network, and can be more easily
validated (Makarov et al., 2005; de Abril et al., 2018). A
number of model-free methods proposed for reconstructing
the connectivity of in vitro neuronal networks (Garofalo et al.,
2009) have been previously reviewed (Pereda et al., 2005) and
tested (Wang et al., 2014). However, because they rely on
purely statistical indicators, they can only infer how neurons are
functionally coupled, but lack the ability to identify the network
of effective interactions between neurons by either missing the
directionality or confounding indirect and apparent links from
direct ones. Directionality conveys the causality of signaling in
the network, i.e., which neural element has causal influences
over another (Figure 1Ai). However, causality does not imply
a direct connection between two neurons. In fact, a functional
coupling between two neurons can be causal even though the
two neurons are not directly connected, and this may occur if
there is a multi-neurons pathway between the two cells (indirect
connection, Figure 1Aii), or if the connection detected between
the two neurons is simply a mathematical artifact resulting from
the correlation of correlations generated by common inputs from
other participating neurons (apparent connection, Figure 1Aiii)
(Friston, 2011).

The whole issue of estimating the network connectivity from
correlation has a long history (Eggermont, 1990). Methods
such as correlation (Rodgers and Nicewander, 1988), coherence
(Hinich and Clay, 1968; da Silva et al., 1989; Grinsted et al., 2004),
mutual information (Grassberger et al., 1991; Quiroga et al., 2002;
Garofalo et al., 2009), phase and generalized synchronization
(Quiroga et al., 2002; Bastos and Schoffelen, 2016), and
joint entropy (Garofalo et al., 2009) describe only statistical
dependencies between recorded neurons without carrying any
information of causality or discriminating direct and indirect
effects. Techniques such as cross-correlation (Garofalo et al.,
2009; Ito et al., 2011), directed and partial directed coherence
(Saito and Harashima, 1981; Baccalá and Sameshima, 2001),
and Granger causality (Granger, 1969; Seth, 2010) are examples
of causal indicators as they provide inference of directionality
of dependence between time series based on time or phase
shifts, or prediction measures. However, because these operators
rely only on pairwise statistical comparisons and treats pairs of
neurons independently, they show the same limitations when
dealing with indirect connections and external inputs. Although
the literature includes a long list of attempts in studying and
addressing the ever-existing problem of inference of causation
and existence of physical synaptic connections between neurons
(Pernice and Rotter, 2013; Terada et al., 2020), only a few
techniques competed in the challenge of inferring the effective
connectivity of a network (de Abril et al., 2018). Transfer entropy
(TE) is a well-known method that allows inference of effective
connectivity (Vicente et al., 2010). With this, Orlandi et al.
(Orlandi et al., 2014) proved successful in detecting the effective
connectivity from simulated calcium imaging recordings and the
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FIGURE 1 | Definition of functional and effective connectivity. (A) Classification

of causal (directional link), indirect (multi-neurons pathway), and apparent

(functional coupling due to common input) connectivity. (B) Classification of

most common connectivity inference methods in terms of causality and

detection of direct links. On the x-axes, the graph shows a scale of causality

that refers to the ability of a given connectivity method to infer or not the

directionality of the functional connections between neurons. On the y-axes,

the graph visually quantifies the capabilities of one approach to detect direct

links between neurons by identifying and discarding multi-neurons

connections and apparent ones. Indicators that are acausal and do not infer

direct links can only report about functional connectivity (light yellow);

indicators which contain information about direction of interaction and direct

neuron-to-neuron communication are close to the inference of effective

connectivity (orange color). Most common model-free techniques are

indicated with black dots. Model-based methods are reported with blue

triangles and their ability to infer effective connectivity is negatively weighted by

the impossibility to test their performances. The super-selective correlation

approach we propose is reported in black like the other model-free methods; a

diamond signal is used to emphasize the fact that, although being model-free,

it aims at inferring effective connections. The graph visually summarizes results

of comparisons between connectivity methods from review papers (Garofalo

et al., 2009; Wang et al., 2014; de Abril et al., 2018) and do not contain

precise quantitative information about the differences.

same algorithm revealed interesting connectivity aspects in in
vitro networks (Tibau et al., 2020). Partial-correlation (Garofalo
et al., 2009; Sutera et al., 2017), which takes into account all
neurons in the network, showed best performance in detecting
direct associations between neurons and filtering out spurious
ones (Orlandi et al., 2017). The most significant limitation of
this solution is its high computational cost. Moreover, as the
partial correlation matrix is symmetric, this method is not useful
for detecting the causal direction of neuronal links. It also does
not attempt to infer self-connections (de Abril et al., 2018). A
combination of correlation and network deconvolution was used
by Magrans and Nowe (de Abril and Nowe, 2015) to infer a
network of undirected connections with elimination of arbitrary
path lengths caused by indirect effects. However, this method also
cannot identify directions of connections and the singular value

decomposition of network deconvolution has an extremely high
computational complexity (Orlandi et al., 2017). A convolutional
neural network approach (Romaszko, 2017) showed the same
limitations in computational complexity and undetected self-
and causal connections. Figure 1B graphically summarizes the
inference capabilities of the state-of-the-art connectivity methods
as reported in Friston (2011), Wang et al. (2014), Bastos and
Schoffelen (2016), de Abril et al. (2018).

In this work, we propose a novel, mathematically rigorous
method that uses a model-free approach (i.e., does not depend
on a set of underlying assumptions about the biology of
participating cells) to decompose the complex neural activity
of a network into a set of numerically validated direct, causal
dependencies between the active component neurons that
make up the network. First, the inference power of statistical
approaches (signal-, network-, and information theory-based)
allowsmapping the functional connectivity of the network. Then,
we propose a mathematically rigorous selection scheme that
distinguishes between apparent or non-direct links and direct
ones, therefore enabling inference of direct causal relationships
between connected neurons that more realistically describe the
effective connectivity of the network (Figure 2).

We evaluate the performances of the proposed method on
synthetic datasets generated through simulation of an Izhikevic
neuronal network model mimicking the activity of in vitro
cultures of neurons, and demonstrate important improvements,
relative to the state-of-the-art connectivity methods, to network
inference accuracy due to a deterministic component of our
method capable of identifying false positive (FP) connections.

We show an experimental application of our approach
to spontaneously generated in vitro networks of hiPSC-
derived neurons cultured on MEAs providing an analysis and
interpretation of the physiology not possible otherwise. We
describe the temporal evolution associated with the connectivity
and dynamic signaling of developing hiPSC-derived neuronal
networks, including increasing synchronized activity and the
formation of small numbers of hyper-connected hub-like nodes,
as similarly reported by others (Canals et al., 2015; Kirwan
et al., 2015). These results further support the performance
quality of our approach and provide an example of how
this connectivity method can be used to characterize network
formation and dynamics, thus facilitating efforts to generate
predictive models for neurological disease, drug discovery, and
neural network modeling.

2. MATERIALS AND METHODS

2.1. Theoretical Framework for
Connectivity Reconstruction
The central contribution of this manuscript is in providing an
innovative, computationally efficient, and easy-to-apply method
for decomposing the collective firing properties stored in
the electrophysiological recordings from neuronal networks
on MEAs into direct (one-to-one) and causal (directional)
relationships between all participating neurons. We propose a
multi-phase approach that identifies and discards any correlation
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FIGURE 2 | Connectivity reconstruction via detection of correlation triangles

and classification of indirect and apparent links. (1) Given three neurons 1, 2,

and 3, our algorithm searches, in time, for all correlations between them by

computing the pairwise correlation functions R1,2, R2,3, and R3,1. In this

representative example, the algorithm detects two correlation peaks for each

pair of neurons and associates the corresponding delays of interactions (τ−1
1,2 ,

τ+1
1,2 , τ−1

2,3 , τ−2
2,3 , τ+1

3,1 , τ+2
3,1 ), which are defined by the location of the peaks with

respect to the origin of the x axis. Eight possible combinations of interactions

can occur in time between the three pairs of neurons. These correspond to the

eight correlation triangles shown on the right side of the panel. (2) Among the

correlation triangles, the algorithm detects 2 critical cases

(|τ−1
1,2 + τ−2

2,3 + τ+1
3,1 | < ǫ and |τ+1

1,2 + τ−1
2,3 + τ+2

3,1 | < ǫ) and identifies the peaks

relative to an indirect (multi-neurons path) and an apparent (common output)

connection by searching for the ones with smaller amplitude. The smallest

peaks (τ+1
3,1 and τ+2

3,1 ) are discarded from the analysis. (3) The correlation

triangles are functional to the estimation of the direct connections in the

network. Because no more correlation exists between neuron 1 and 3, the

estimated effective connectivity includes only the direct links for (1, 2) and

(3, 1): two connections with opposite directionality exist between neuron 1 and

2 because positive and negative correlation peaks are detected in R1,2 (τ−1
1,2

and τ+1
1,2 ); one link connects neuron 2 to neuron 3 as a result of the positive

correlation peaks in R2,3 (τ+1
3,1 and τ+2

3,1 ).

link that does not directly relate to a direct interaction between
two cells. The core of our methodology is graphically described
in Figure 2 and includes three main phases: (1) statistical,
correlation-based reconstruction of functional connectivity;
(2) mathematically rigorous super-selection of direct links
via identification of peaks related to indirect and apparent
links, and (3) reconstruction of directed causal connectivity
between neurons.

1. The functional connectivity (statistical dependencies) of
a network is computed via pairwise correlation studies.
Functional interactions between neurons are represented
by correlation peaks and their delays τ . The algorithm
constructs correlation triangles by considering all possible
combinations of correlation delays for any possible triplet
of neurons (Figure 2.1). Importantly, correlation triangles do
not refer to any three-neuron physical connection, sometimes
referred to as “neural triangles” in the literature (Song et al.,
2005; Roxin et al., 2008). Here, we define a correlation
triangle as a mathematical object that our algorithm uses to
classify functional interactions based on all possible triplets
of correlation delays that can be formed in the network.
Therefore, correlation triangles exploit the entire signal
history of neurons in order to determine the correlation peaks.

2. Correlation peaks associated with indirect or apparent links
in corresponding correlation triangles are discarded from
the analysis by means of a mathematical super-selection
rule, which deterministically classifies the type of dependence
between each triplets of neurons (Figure 2.2). The super-
selection rule is formally presented later. Here, it can be
summarized as follows. If a correlation triangle is made
up of three correlation delays that are the combination of
one another, one of the component correlation delays is
either representative of an indirect link (Figure 1Aii) or of
an apparent link (Figure 1Aiii); therefore, this correlation
delay does not refer to an effective connection and must be
discarded. When the algorithm finds a correlation triangle
that satisfies this condition, it deepens into the classification
of the involved correlation delays and selects the correlation
peak to remove based on the peak’s amplitude. For example, in
Figure 2.2, the algorithm identifies an indirect link between 1
and 3 (amulti-neuron pathway), and an apparent link between
1 and 3 (correlation due to a common output). The correlation
peaks corresponding to these links in the correlation triangles
are discarded from the analysis. Importantly, the algorithm
removes correlations from the analysis, but does not remove
inferred physical connections.

3. Only when all correlation peaks between two neurons are
discarded, the algorithm recognizes that a specific interaction
is only apparent and deletes the corresponding connection.
For example, in Figure 2.3, there is no existing connection
between neurons 1 and 3. The estimated effective connectivity
includes only direct links for (1, 2) and (2, 3): two connections
with opposite directionality exist between neuron 1 and 2
because positive and negative correlation peaks are detected in
R1,2 (τ

−1
1,2 and τ+1

1,2 ); one link connects neuron 2 to neuron 3 as

a result of the positive correlation peaks in R2,3 (τ
+1
2,3 and τ+2

2,3 ).

The following sections describe the mathematical details of the
developed technique. The connectivity reconstruction algorithm
and associated functions were implemented in MATLAB and
code is available online at https://github.com/fpuppo/ECRtools.
git. In Supplementary Figure 1 (see Supplementary Material),
a pseudo-code of the reconstruction algorithm is
also reported.
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2.1.1. Reconstruction of Functional Connectivity

2.1.1.1. Temporal Correlations
To identify the temporal correlations between the activity of all
pairs of n recorded neurons j, k ∈ {1, . . . , n} in the network,
we computed the pairwise correlation function between the
corresponding signals sj and sk

Rjk(τ ) =

∫ ∞

−∞

sj(t)sk(t + τ )dt (1)

In this formulation, the indexes j and k are restricted to k > j
in order to avoid unnecessary calculation of auto-correlations
(j = k) and explicitly calculate correlations only for k > j
because, thanks to the symmetry of (1),

Rjk(τ ) = Rkj(−τ ). (2)

Using the fast Fourier transform (FFT) and the correlation
theorem, computing correlations in Equation (1) can be
efficiently performed inO(S log(S)) with S the number of samples
composing the signals sj. In fact, if F is the FFT operator and
F

−1 the corresponding inverse, the correlations can be efficiently
computed as Rjk(τ ) = F

−1[F[sj] · F[sk]] (Bracewell, 1999).
Peaks of Rjk(τ ) represent correlations among neurons j and

k. Their amplitude can be regarded as a measure of the level of
correlation between the spikes in their registered firing activities.
The higher the amplitude of a peak in Rjk(τ ) (if any), the higher
the probability that there is a statistical dependency between
neuron j and neuron k. However, as explained earlier in the
text, the existence of a functional coupling between two neurons
does not necessarily imply that there is an effective connection
between them. For example, the activity of any of the two
neurons can have an effect on the other through one or more
interconnecting cells between them (Figure 1Aii). The location
of each correlation peak with respect to the origin indicates the

temporal delay τ
peak

jk
between the activity of neuron j and neuron

k (Supplementary Figure 2). The sign of this delay, i.e., whether
the peak is found on the positive or the negative quadrant of the
correlation function, defines the directionality of the interaction
that, in the ideal case of a direct connection, suggests which is the
pre- and post-synaptic neuron in the interaction.

2.1.1.2. Peak Detection
We implemented a peak detection algorithm applied to Rjk(τ )
to identify all existing functional correlations between any pair
of neurons (j, k) in the network and to discern the directional
dependency between their spiking activities.

As part of the peak detection phase, we used a smoothing
Gaussian filtering (Silverman, 1986) applied directly to Rjk(τ ) to
remove high frequencies and facilitate the proper identification
of correlation peaks. As introduced above, we assume that a
correlation peak in Rjk(τ ) represents a potential connection

between j and k and that τ
peak

jk
is the signal propagation delay

between them. We define a temporal range (−T,+T) over which
to perform the peak search.

For a given parameterization of the Gaussian filter and a
defined time window (−T,+T), the peak detection algorithm

allows us to identify a list of pairwise temporal delays τ h
jk
between

all pairs of neurons (j, k) in the observed network, with h ∈
{

−hn, . . . ,−1, 1, . . . , hp
}

jk
, where hn is the number of peaks with

τ h
jk

< 0 and hp the number of peaks with τ h
jk

> 0. Peaks identified

on the positive (
{

1, . . . , hp
}

jk
) or negative (

{

−hn, . . . ,−1
}

jk
) side

indicate whether the spiking activity of neuron j has temporally
occurred, respectively, before (τ h

jk
> 0) or after (τ h

jk
< 0)

the firing of neuron k. Finally, from Equation (2) the following
relation holds:

τ hjk = −τ−h
kj

. (3)

2.1.2. Detection of False Positive Connections
Correlation peaks detected in Rjk(τ ) represent any type of
statistical dependence between two neurons. Peaks relative to
functional dependencies due to multi-neuron connections or
apparent coupling are the main cause of FPs generated in
the connectivity reconstruction process and a major source of
error in competing methods. To address this, we introduce a
framework that identifies the effective network configuration via
implementation of a deterministic super-selection rule over all
the detected correlation triangles.

2.1.2.1. Pure Direct Connections and Correlation Triangles
In order to identify possible dependencies between correlations,
i.e., if a correlation among neurons is not direct but results from
a third party correlation, we consider cyclic triplets of correlation

delays (τ h
jk
, τ h

′

km
, τ h

′′

mj ). Here, cyclic means that each neuron’s index

appears in two ordered neuron’s index pairs, once as the first
index and once as the second index. This cyclicity directly implies
that, if we had

τ hjk + τ h
′

km + τ h
′′

mj = 0, (4)

one of the three delays would result from signals that correlate
through an intermediary signal as shown in Figure 2.

However, since the correlations among the neurons’ firing
are not Dirac deltas but rather Gaussian-like, we can define a
threshold ǫ > 0 such that a weak version of (4) still holds.
Therefore, Equation (4) reads

|τ hjk + τ h
′

km + τ h
′′

mj | < ǫ (5)

This equation identifies the case where there is a near-perfect
match between the correlation delay of each of the three cells
and represents the first step in the proposed super-selection
algorithm. The definition of “near-perfect match” is based on the
choice of the correlation triangle threshold ǫ. In ideal conditions,
ǫ → 0 and Equation (5) reduces to Equation (4).

Finally, it is useful to define a correlation triangle as the triplet

(τ h
jk
, τ h

′

km
, τ h

′′

mj ) of cyclic correlation delays that the algorithm

detects for any pair of neurons in the network. The algorithm
aims to construct njk × nkm × nmj correlations triangles given
by all possible combinations of correlation peaks of any triplet of
neurons’ pairs (Figure 2).

To have a complete picture of our method, we can define
the directed graph G = (V ,E) whose vertexes V are the
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active neurons and edges E are the active synaptic connections.
This definition implies that our algorithm reconstructs only the
connections between the neurons in the culture whose activity
has been recorded, and contains no reference to the full structural
connectivity of the biological network under study. Within this
framework, each correlation triangle shares up to three edges
with G, and the union E′ of all τ h

jk
defines the direct graph G′ =

(V ,E′). It follows that

G ⊆ G′. (6)

G′ can overestimate G because it could include connections that
are FPs (Figure 2.1). For this reason, we need to determine
an efficient minimization scheme to reduce G′ as close as
possible to G.

2.1.2.2. Edge Covering Minimization
In order to reduce G′ to G, it is sufficient that for each correlation
triangle satisfying Equation (4) [or Equation (5)], we identify the
dependent τ h

jk
and remove it from E′. Therefore, the challenge

is to find a discrimination rule that allows us to select the
correct τ h

jk
in the correlation triangles that satisfy Equation (4)

[or Equation (5)].
By considering the nature of neuronal signals, we can

define the discrimination factor based on the amplitude Ah
jm

of correlation peaks. In fact, a neuron is equivalent to an
input–output object that generates an output signal sout(t) either
independently or dependently on an input signal sin(t) coming
from another neuron. If sout depends on sin, the two signals are
not perfectly synchronized but are often noisy (have a phase
noise) resulting from the intrinsic excitability properties of the
neurons. For example, when an incoming spike train from an
input neuron activates an output neuron, the timing of the
output spiking depends on many biochemical factors including
for example the state of voltage gated ion channels. The result
is that the signal of the output neuron is never triggered at the
same exact delayed time, but varies. The larger the variation of
the delayed timing between the input and the output neurons,
the larger the phase noise in the associated correlation peak that
will have smaller amplitude and larger standard deviation than
the correlation among neurons with input and output signals
without phase noise and perfectly synchronized. Moreover, if
the signals belong to two neurons that are interconnected
via intermediary cells, the phase noise is amplified and the
correlation peak is even shorter (low amplitude) and wider (large
standard deviation) (Figure 3A).

Our method takes into consideration only triangles because
a similar analysis performed on higher degree polygons would
be redundant. To clarify this point, let us consider the example
reported in Figure 3B. Let us take a graph composed of four
nodes. If we consider the polygon ABCD, then there will be a
dependency between the edges (the correlation delays) iff

|τAB + τBC + τCD + τCD| < ǫ (7)

Therefore, one of these edges is dependent and the algorithm
should discard it from the analysis. Let us say that, for example,

τDA is the indirect connection. In this case, the two additional
apparent edges AB and AC are always present because signals
are correlated when Equation 7 is satisfied. Therefore, the
polygon ABCD can be decomposed in four triangles ABC, ACD,
ABD, BCD. If we consider the triangles ACD or ABD as in
Figure 3B, in both cases, the delay τDA is the one detected and
discarded because, as explained in Figure 3A, the corresponding
correlation peak has lower amplitude and larger width as it results
from a signal that has propagated through three links.

Within this picture, we can establish the second step in the
super-selection algorithm as:

Given a correlation triangle (τ h
jk
, τ h

′

km
, τ h

′′

mj ), the delay associated

with the smallest correlation peak amplitude

min(Ah
jk,A

h′

km,A
h′′

mj) (8)

estimates the false positive connection and is discarded from E′.
In the ideal case, i.e., without errors and approximations, this

super-selection scheme eliminates all indirect correlations, and
therefore reduces G′ exactly to G.

Figure 3C reports a real case scenario of apparent connection.
Three neurons (indexed 1, 4, and 12 in our model) from a
recorded biological neuronal network are temporally related
as described by the corresponding pairwise correlations
(Figure 3C) and the resulting correlation triangle schema
visualized in Figure 3D. The algorithm checks all correlation
triangles in the recorded network and detects that this particular
case satisfies equation 5 for a selected ǫ =3 ms. As explained
in the following section, ǫ was taken equal to the mean width
of the correlation peaks. One correlation delay matches the
combination of the other two. The algorithm identifies which
of the three peaks corresponds to an indirect or apparent
link by comparing the peaks’ amplitude. In the example, the
delay τ1,4 corresponds to the smallest correlation peak and is
therefore discarded from the analysis, i.e., from E′. If in the
chosen temporal window that defines E′ only τ1,4 is detected for
neuron 1 and 4, the final reconstruction will not include any
effective connection between 1 and 4. This is a nice example of
marrying-parents effect (de Abril et al., 2018) where an apparent
link between neuron 1 and 4 is formed as a result of neuron 12
firing at the same time on both of them.

2.1.3. Connectivity Matrix Reconstruction
There are three fundamental parameters that affect the inference
performance of this method:

• T defines the time window (−T,+T) over which to search
for correlation peaks in the correlation function Rjk. This
parameter affects the filtering power of the connectivity
algorithm. An optimal T depends on the specific activity
properties of the neuronal network under analysis. To
account for all direct neural interactions, the best time
window should include the mean maximum propagation
delay between the neurons in the network. If the window is
too small, the algorithm can over-filter otherwise important
correlation interactions.
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FIGURE 3 | Correlation peaks and correlation triangles. (A) The effect of indirect connectivity on correlation peaks. The edge AB, BC, CD, and DE are directed. The

associated correlation peaks are high and narrow because there is a direct dependency between the activity of neuron A (B,C,D or E) and the one of neuron B (C,D or

E). The links AC, AD, and AE are indirect, with increasing order of correlation between the neurons because of more intermediary cells on the paths that link A to C, D,

and E. The longer the path, the weaker the dependency between the neurons that results in a lower and wider correlation peak. (B) Correlation triangles reconstruct

all possible dependencies between neurons. On the left, a graph composed of four neurons A, B, C, and D (polygon ABCD). Each edge is associated with a

correlation peak and corresponding correlation delay τAB, τBC, τCD, and τDA. True connections are indicated by solid lines. The delay τDA corresponds to an indirect

connection, which the algorithm must identify and discard. This is indicated by a dotted line. The edges AB and AC are apparent edges that are always present when

signals are correlated and Equation (7) is satisfied. Therefore, the polygon ABCD can be decomposed in four triangles ABC, ACD, ABD, and BCD (each color

represents a different triplet). The participating correlation triangles reconstruct all possible dependencies among all neurons in the polygon ABCD. Each correlation

link is associated with a correlation peak whose amplitude and width depends on the length of the indirect correlation path connecting the two correlated neurons (see

Figure 3A). In triangles ACD and ABD, the delay τDA results from a signal that has propagated through three links AB, BC, and CD. Thus, τDA will be detected and

discarded because having lower amplitude and wider peak than the other peaks. (C) Real case scenario of correlation triangles and detection of FP connections.

Correlation functions R1,4, R1,12, R4,12 computed for pairs of biological neurons (1, 4), (1, 12), (4, 12) (blue line) connected as in panel (B). The selected time window

was (-20 ms, +20 ms), but the graph only shows a zoomed view in (−10 ms, +10 ms) to better describe the selection rule if only one correlation was detected in time

between the neurons. The σ of the Gaussian filter was 0.0005 s, resulting in smoothed correlation signals (orange dashed line). The detected correlation peaks (red

stars) represent functional correlations between neurons and their combinations define the correlation triangles that our algorithm uses to detect FP connections. The

horizontal offset between the position of each peak and the origin represents the temporal delay τj,k associated with these links. (D) These delays satisfy the cyclic

condition on τ , i.e., |τ1,4 + τ4,12 + τ12,1| = |τ1,4 + τ4,12 − τ1,12| < 3 ms, therefore indicating that one of the three correlations in the correlation triangle corresponds to

an apparent link. The algorithm detects which of the three by searching for the correlation peak with smallest amplitude. In the example, A1,4 has the smallest

amplitude and the algorithm discards it from the analysis preventing generation of an FP link.

• σ is the standard deviation (width) of the smoothing Gaussian
filter and defines the frequencies to filter out in the correlation
functions. σ is important because the location of the detected
correlation peaks weakly depends on it. In fact, while the
Gaussian filter is necessary for a more reliable peak detection,
the level of smoothing introduces a small temporal jitter
between the actual location of the peak and its filtered version.

• ǫ is the correlation triangle threshold below which the
correlation delays in a correlation triangle can be considered
the combination of one another, i.e., how similar the
combination of two correlation delays τkm and τmj must be
from the direct correlation delay τjk to estimate a three-neuron
effective connectivity (see Equation 5). Large ǫ values increase

the number of detected correlation peaks and computed
correlation triangles with the potential shortcoming that
true positive (TP) connections are filtered out. Too small
ǫ values are responsible for a poor filtering of spurious
delays. A good approximation for ǫ is the mean width of the
detected correlation peaks which represents the variance of the
correlation delays. For example, if we consider the correlation
peaks from the real case scenario in Figure 3C, the width of
the peaks is about 2.5 ms; therefore, we chose ǫ = 3 ms as
threshold value for our super-selection of direct links.

All three parameters should be tuned in order to have the best
outcome from our method.
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FIGURE 4 | Connectivity reconstruction and performance evaluation in synthetic neuronal networks. (A–C) Evaluation of the performance of the connectivity method

under varying time window (−T,+T ), standard deviation σ , and for a fixed ǫ = 0.7 ms, for one simulated network of 10 neurons. (A) Net number of detected true

positives TP/nc. (B) Net number of FPs FP/nc. (C) Ratio 1 = (TP− FP)/nc as chosen metric for evaluation. nc is the known total number of connections in the

simulated network. (D) Visual highlight on the behavior of 1: a peak of performance is reached around 65%; low variability is proven for a wide range of T and σ

(plateau indicated by the red plane). (E) Definition of a collection of K = 9 points p in the T-σ space for which the algorithm shows performances falling in

correspondence of the plateau area. (F) Abstract representation of the statistical method for recognition of FPs connections and connectivity reconstruction. For each

point a connectivity matrix Mp is computed, resulting in the computation of K = 9 different connectivity matrices for the same input network. Combination of the

results enables computation of the frequency fjk for each connection following Equation (9). (G) Average (N = 20) performances computed at different discrimination

threshold d. The TPs remain roughly constant. On the other hand, the FPs decrease and fluctuate around very small percentage. The algorithm filters out the FPs that

fluctuate at high frequency reaching best performances (85%) at d = 1. (H) Analysis of scaling properties. An average (N = 20) number of TP/nc, FP/nc, and 1 was

computed for 20 randomly generated networks with 10, 20, and 50 neurons, respectively. Very good performances are maintained constant for increasing network

size. (I) Accuracy ACC indicator computed for different network sizes as a function of the discrimination threshold d. The error bars stand for the standard deviation of

a dataset of 20 different networks.

The connectivity reconstruction approach we propose here
is based on a parameter variation scheme that leads directly to
the reconstruction of the effective connectivity matrix of the
network. We used TP/nc [net number of TP connections, with nc
the number of connections in the simulated neuronal network],
FP/nc (net number of FP connections) and 1 = (TP − FP)/nc
(confidence indicator) to investigate the effect of T, σ , and ǫ

(Figures 4A–C). The evaluation of the minimized G′
p enabled

identification of 80–95% of the total positive direct connections
present in the model (TP/nc) in a wide range of p = (σ ,T), as
demonstrated by the curve plateau in Figure 4A. The remaining
percentage of connections corresponded to the net number of
false connections (FP/nc) that the algorithm was unable to sort

out (Figure 4B), which remains very small for most parameter
values. For small T (T < 2ms), we observed a decay in sensitivity
clearly due to over-filtering of true direct correlations. When
doing so, the FPs first increased due to complete failure of the
algorithm in recognizing connections in the small temporal range
of observation and then rapidly decayed for very small T because
no peaks could be found. This demonstrates the importance of
choosing larger values both for T and for σ rather than smaller
ones in order to avoid missing any correlation information that
could negatively bias the algorithm performances. Figure 4C
shows the resulting variation of 1, which reached a peak of
confidence at 65% and was maintained constant for a wide range
of parameters.
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This process allowed us to individuate a range of values for T
and σ where the inference performances of the algorithm reached
a maximum plateau (Figure 4D), and define the reconstruction
rule of our connectivity method as follows (the numerical details
are discussed in the next section).

For a fixed value of ǫ, we consider a collection of p points in
the T-σ space (for example the nine points in Figures 4D,E).
The boundaries for σ and T can be chosen according to their
definitions. For example, a minimum value for σ should be
related to the very high frequency in the signal while the
maximum value to the frequencies in the lower middle spectrum.
A minimum value of T should be at least as large as 2–3 times the
average delay among neurons to guarantee that the relevant peak
are included in the analysis. On the other hand, the maximum
value for T can be chosen as several times (for example 5–
6) the average delay among neurons in order to include more
correlation triangles later used to refine the selection.

Then, for each point p = (T, σ ), we compute E′p and

perform the super-selection to minimize E′p. Then, we compute
the connectivity matrix Mp (e.g., Figure 4F) with 1 in the (j, k)

entry if the reduced E′p contains at least one τ h
jk

> 0, and 0

otherwise. We consider only τ h
jk

> 0 because, according to

Equation (3), if τ h
jk

< 0, E′p includes τ−h
kj

> 0 that corresponds

to the same correlations.
We can therefore define the frequency for each connection in

the connectivity matrix as

fjk =
1

K

∑

p

Mpjk (9)

where K is the total number of computed points p. Each
frequency computed in this way is a binary classifier for a
given effective connection between neurons j and k. Therefore,
introducing a discrimination threshold 0 ≤ d ≤ 1, for each
connection we can decide if it is true or false and compute the
fraction of true and FP connections.

2.2. Experimental Methodology
2.2.1. Synthetic Neuronal Network Model
To develop and validate our connectivity method, we used
spiking data generated via simulations of neuronal networks
based on the Izhikevich model (Izhikevich, 2003) (see
Supplementary Material and Supplementary Figure 3).
The original code was modified to guarantee high levels of
activity in the network as well as bursting like behavior similar
to that registered in our experiments (Supplementary Figure 3).
We performed our analysis on sparse networks (nc << ntot ,
with nc the number of connections in the simulated network
and ntot = TP + TN + FP + FN the total number of possible
connections that can be formed given the input size of the
investigated network model) that could be more easily simulated
and analyzed with standard computational resources and
that accurately described the sparse activity of the hiPSC-
derived neuronal networks we investigated. However, it is
worth noting that our model is general and not restricted to
sparse connectivity.

To evaluate the scaling properties of our method, we used data
generated via simulations of network models having a varying
size of 10, 20, and 50 nodes. For each network size, 20 different
networks were randomly generated, simulated, and then analyzed
for connectivity reconstruction. For each tested network, we
compared the adjacency matrix reconstructed for a frequency fjk
to the input connectivity matrix of the simulated model.

2.2.2. Performance Measures
The performances were assessed based on the indicators TP/nc
(net number of TP connections, with nc the number of
connections in the simulated neuronal network), FP/nc (net
number of FP connections) and 1 = (TP − FP)/nc (confidence
indicator). 1 is independent on the connectivity of the network
being reconstructed and, because of its definition, it better defines
the level of confidence in the detection of TPs by highlighting the
method capabilities in rejecting or not the FP connections. For
the sake of comparison with the literature, we also used the more
standard accuracy measure ACC = (TP + TN)/ntot (Garofalo
et al., 2009; Poli et al., 2016).

2.2.3. Numerical Experiments
We used TP/nc, FP/nc and 1 to investigate the effect of T, σ and
ǫ (Figures 4A–C): from pre-selected ranges of these parameters
based on observations on the simulated activity, we tuned T, σ ,
and ǫ by looking at the method’s performance in selected ranges
(T ∈ (1,5) ms, ǫ = 0.7 ms, and σ ∈ (10−2,100) ms). Most of
the performance data 1 distributed to form a plateau in the T
and σ space (Figure 4D). In this plateau region, we definedQ = 9
points corresponding to the combinationsCσ ,T = (σ ,T), with T
=2.25 ms, 3.5, 4.5, and σ = 0.013, 0.1, 0.63 ms and we used them
to reconstruct the connectivity matrix based on the threshold
frequency fjk as formally described in the previous section.

The network model we adopted was used to generate spiking
data useful to test and develop the connectivity algorithm based
on analysis of correlations. However, this model was not intended
to be representative of real biological neurons and does not
reproduce all the specific features of electrical recordings from
in vitro neuronal cultures. As a result, the range of parameters
selected for the simulated case did not necessarily match the one
for the real case and was later adapted to the data of recorded in
vitro neuronal networks. However, the same parameters showed
very high reproducibility in repeated experiments both with
simulated networks and hiPSC-derived neuronal systems. Scaling
performances will be discussed later in the manuscript; however,
T, σ , and ǫ were not affected by the network size.

2.2.4. Electrophysiological Characterization of

hiPSC-Derived Networks
Methods for generating cortical neurons from hiPSC, analyzing
the composition of the resulting cell population, and culturing
on MEA are described in the Supplementary Material. hiPSC-
derived cortical neurons plated on 48-well format MEA plates
were recorded every week. Recordings were acquired with the
Maestro recording system and Axion Integrated Studio (Axion
Biosystems). A butterworth band-pass (10–2,500 Hz) filter and
adaptive threshold spike detector set to 5.5X standard deviations
were applied to the raw data. Raster plots of neuronal spiking
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activity were generated using Axion Neural Metrics Tool, and the
data were analyzed using Excel (Microsoft) and GraphPad Prism
version 7.00 (GraphPad Software) (Supplementary Figures 3, 4).

We used routines implemented in Matlab to analyze the
electrophysiological recordings and identify the active neurons
in the plate. In MEA recordings, the same electrode can record
the activity of multiple neurons (Supplementary Figure 6).
However, identification of spikes corresponding to different
neurons (Supplementary Figure 7) is crucial to interpret
electrophysiological recordings, especially in connectivity studies
and analyses of causal dynamics in networks (Rey et al., 2015).
Therefore, we used spike sorting to group spikes with similar
shape into different clusters, each corresponding to a different
unit (neuron). This allowed us to isolate the activity of a few units
per electrode, which resulted in the reconstruction of the activity
of multiple detected neurons in the MEA well (Figure 5A). To
this end, we adopted a commonly used spike sorting approach
where principal component analysis (PCA) was used to extract
similar features in the recorded spikes and clustering allowed
us to group spikes with the same profile. We used a k-means
clustering approach consisting of partitioning n observations
into k clusters in which each observation belonged to the cluster
with the nearest mean. The clustering algorithm started with a
pre-defined k = 2. This value was then automatically updated
to the best k estimate based on observations on the explained
variance in PCA. The clustering was repeated 20 times using new
initial cluster centroid positions (no change was observed for
more than 20 replicates). The final output was the solution with
lowest within-cluster sums of point-to-centroid distances. In a
few cases, the clustering approach did not perform efficiently
and generated either too many or too few clusters, which were
detected by observing the increased number of outliers in the
spike sorting output. In these critical cases, a visual test was
performed to identify the correct clusters.

2.2.5. Connectivity Analysis in hiPSC-Derived

Cultures
We used our algorithm to estimate the connectivity in recorded
hiPSC-derived neuronal networks at week 1, 2, 3, and 4
(Figures 5B,C). We selected a range for the parameter T based
on considerations of the mean propagation delays between
synaptically connected neurons. While physiologically many
variables contribute to neuronal delays, a rough indication of the
delay in synaptically connected cortical neurons was estimated
to be 6–14 ms (Gonzalez-Burgos, 2000). We estimated similar
conduction velocities and latency values in a previous study
performed on basket and pyramidal neurons from the rat
neocortex (Puppo et al., 2018). Given that monolayer networks
of hiPSC-derived neurons may have temporal properties that
differ from those observed in intact brain networks, we decided
to avoid neglecting correlations that could negatively bias the
inference performance by considering a larger temporal window
(−22, 22) ms. The reconstruction analysis was then performed
with T ∈ 15, 22 ms to include the propagation delays measured
in cortical neurons (6–14 ms) and over-estimated values to limit
over-filtering. For σ , observations on the recordings and the level
of smoothing required for high-frequency noise removal led us to

select σ ∈ (0.3, 0.8) ms.We considered a fixed value of 3ms equal
to the average width of the correlation peaks. Within this range
of parameters, we then selected Q = 9 points corresponding to
the combinations Cσ ,T = (σ ,T), with T = 20, 17.5, 16 ms, and
σ = 0.4, 0.55, 0.7ms.

We used a graph-based connectivity analysis to estimate
developing connections between neurons (Figures 5D–G). A
common graph theory approach to measure the level of
connectivity in a network is to investigate its centrality, which
can be described as the capacity of a node to influence, or be
influenced by, other system elements by virtue of its connection
topology (Oldham and Fornito, 2019). The simplest and most
commonly used measure of centrality is node degree, which is
the number of connections attached to a node. We calculated
the average in-degree and out-degree of the vertexes of each
directed graph corresponding to a reconstructed network by
calculating all incoming and outgoing connections for each
network vertex and then averaging over the total number of
vertexes per network. The statistics was then extended to 20
different wells. A node scoring highly on a given centrality
measure can be considered a hub. Here, we quantified the
number of network hubs at each time point (from 1st to 4th
week) by computing the centrality of the graph and ranking
the vertexes based on the number of incoming connections.
The most important vertexes were defined network hubs. We
averaged this number over 20 reconstructed networks. Finally,
we studied the integration and segregation properties of the
networks (Sporns, 2013a) by computing the average mean path
length and mean cluster coefficient (CCo). We calculated the
mean path length as the shortest path distance of all vertex
pairs. Infinite (absent) connections between neurons were not
considered in the calculation. With the use of Matlab routines,
we also computed the CCo as the fraction of triangles around a
node, which is equivalent to the fraction of node’s neighbors that
are neighbors of each other (Newman, 2003).

2.2.6. Estimate of Signaling Probability in MEA Data
We explored the functional role of the active neurons
identified in the reconstructed effective network by computing
a possible estimation of their probability to be nodes “initiator,”
“propagator,” or “receiver.” For a given network, we considered
the neuronal activities visualized in the raster plots (Figure 5A)
and inferred the behavior of each neuron by exploring the
possible causality of spiking events. In brief, given a network
with n active neurons, for each neuron j we counted the number
of spikes s+ and s− in the activity of all other n − 1 neurons
happening within 15 ms on either the right (s+) or left (s−) side
of each spike of neuron j. We used s−/(s+ + s−) as an estimate of
the probability that neuron j is a receiver. In fact, for s−/(s++s−)
close to 1 the neuron has large probability to be receiver, for
values close to 0 j has large probability to be initiator and for
values in the middle it has large probability to be propagator. We
then compared this probability with the number of connections
in the inferred effective connectome.
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FIGURE 5 | Connectivity reconstruction from neural recordings of developing induced pluripotent stem cells (hiPSC)-derived neurons. (A) Raster plots of the same

MEA well at different time points during development: week 1, 2, 3, and 4 after plating. The four panels shows spiking signals from individual neurons (rows) obtained

(Continued)
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FIGURE 5 | through spike sorting, principal component analysis (PCA), and k-means clustering of 300-s recordings. The culture develops complex network features:

from weakly active and randomly organized (individual spiking events), to very active and fully organized (network bursts). (B) Estimated effective connectivity of the

developing culture whose activity is described in (A). Each visual map consists of a 1.2 × 1.2 mm multi-electrode array (MEA) plate (gray area), a 4-by-4 array of

micro-electrodes (red circles) and the estimated directed connections (black arrows). The active neurons are represented by black dots; they are randomly distributed

around their corresponding sensing electrode within a radius of 50 µm. (C) Directed graph relative to the culture at week 1 and 4. The connectivity is equivalent to the

one visualized in B but, for clarity and consistency with the main text, links between neurons are directed edges (arrows), active neurons are network nodes (blue:

connected; yellow: independent). Given a MEA well and a specific time point, indexes refer to active neurons with recorded activity reported in (A). Note that neurons

mapped at week 1 do not correspond to neurons mapped in the following weeks, although they are indicated with the same indexes. (D–G) Graph theory based

analysis of network connectivity in developing hiPSC-derived neuronal-network. (D) Average number (N = 20) of active neurons (black) and detected connections (red)

in MEA wells recorded at week 1, 2, 3, and 4 after plating. The error bars represent the standard deviations for a dataset of 20 different MEA wells. (E) (Left panel)

Statistics (N = 20) on the neuronal in-degree (number of input connections) (blue) and out-degree (number of output connections) (yellow). The vertical red bars stand

for the standard deviations of in-degree and out-degree data. (Right panel) Average maximum (continuous line) and minimum (dashed line) in-degree (top) and

out-degree (bottom). The number of in- and out- degree is equally distributed with equivalent raising behavior as a function of the cultures’ developmental stage.

(F) Statistics on network hubs as a function of the culture’s age. In blue, average (N = 20) maximum hub size. We used the in-degree centrality measures for hub

detection and characterization. In yellow, percentage of neurons that function as network hubs relative to the total number of active neurons in the well (value

averaged over 20 wells). More mature networks include few super-hubs (∼5% of the total number of neurons) with increase in size as demonstrated by the raising

number of incoming connections at week 3 and 4. (G) Characterization of network segregation and integration properties. Values in the graph correspond to the mean

path length (PL) and mean clustering coefficient (CCo) calculated for each well at week 1, 2, 3, and 4 after plating and then averaged over 20 wells. The error bars

correspond to the standard deviation of 20 different measures. The mean PL corresponds to the average shortest path length in the networks. Infinite (absent)

connections between neurons were not considered in its calculation. The PL is very low for highly immature cultures where only sparse activity from individual neurons

was mainly registered. It increases as soon as connections are formed (week 2) but no longer changes with the number of new connections (week 2, 3, and 4). The

cluster coefficient (CCo) is low and decreases with the maturation of the network as indication of favored segregation vs. integration with increasing number of

independent but highly integrated network units (hubs).

3. RESULTS

3.1. Numerical Results
To evaluate the performances of our method, we built a
numerical model by designing and simulating an Izhikevic
network model mimicking the activity of in vitro cultures
of neurons (see Supplementary Material). We studied TP/nc,
FP/nc, and 1 as function of the discrimination threshold d
(Equation 9) (Figure 4G). We note that, at a high discrimination
threshold, while TP/nc remained roughly constant (the same TPs
were always detected, for all points), FP/nc decreased toward very
small percentages, smaller than the percentage corresponding
to any of the p points. This is not surprising because the
TP connections, which in most cases point to the interactions
between the same pairs of neurons, were always observed for
all points (fjk ≈ 1, fjk is the frequency for each connection in
the connectivity matrix—see Equation 9). On the other hand, the
FPs are just fluctuations of the algorithm as new FP connections
pointing every time to a different pair of neurons were constantly
generated by the algorithm for all points p. As a result, the same
FP connections observed for a given pair of neurons are very
unlikely detected by many different points, and at high frequency
they are filtered out.

For example, for two given points p1 and p2 the algorithm
detected 15% and 20% FPs, respectively; however, most of the
FPs detected by point p1 did not correspond to the ones detected
by point p2. On the other hand, the same two points p1 and
p2 detected the same TPs. Through filtering, the TPs detected
by both points are preserved, all FPs are discarded, resulting
in 2% of FPs remaining, a percentage that is smaller than any
percentage associated with each of the points. Importantly, this
result demonstrates empirically our mathematical framework
and it highlights its robustness in this example application.

1 data showed average performances of 88.3%, 88.7%, and
86.8% for varying network sizes of 10, 20, and 50 neurons,

respectively, therefore demonstrating a very reliable detection of
connections and exceptional scaling properties in this example
(Figure 4H). Figure 4I shows the accuracy of our method. It is
interesting to observe how the accuracy data for d =1/9, i.e., prior
to using the reconstruction algorithm based on the discriminator
threshold d (Figure 4I, d = 1/9), show performances already
higher than 75% for a network of 10 neurons, and even
higher for larger sizes, thus exceeding the ones obtained
before standard thresholding in published connectivity methods
(Pastore et al., 2016). The complete reconstruction algorithm
led to a computational accuracy close to 100% for all network
sizes due to the further statistical pruning of FP connections
(Figure 4I, d =1).

It is worth noting that, compared to more conventional
indicators, 1 is independent of the network’s connectivity. Since
we made the hypothesis that each node in the network model has
the same average connectivity (preserved in- and out-degree),
which does not increase with the network’s size, we do not
expect and we are not interested in seeing connectivity dependent
variations. On the contrary, other metrics, such as the receiving
operating curve (ROC) or the accuracy (Poli et al., 2016), largely
change with the connectivity properties of the network. For
comparisons, we calculated the accuracy of the investigated
network model. However, because the definition of this measure
is based on the hypothesis that larger networks feature higher
connectivity, our data overestimate the performances, especially
for high network sizes (see the section 4 for further details
on this).

3.2. Measures of Developing hiPSC Neural
Networks in vitro
We tested our connectivity algorithm on networks of hiPSC-
derived neurons cultured on 48-well MEA plates (Axion
Biosystem). The activity was recorded periodically over 4
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weeks (Supplementary Figure 4) to investigate network
development. In parallel, immunofluorescent analyses
(Supplementary Figure 5) of the composition of the neuronal
population showed a mix of excitatory and inhibitory neurons,
as well as astrocytes, resembling the physiological composition
of an in vivo neural network.

The data show an increase in the level of activity as a function
of the developmental phase, as well as the appearance of repetitive
firing patterns and the formation of well-organized network
bursts (Supplementary Figure 4).

We used our algorithm to estimate the connectivity in the
recorded hiPSC-derived neural networks at week 1, 2, 3, and
4 (Figure 5B). Based on the position of each electrode, we
estimated the localization of the recorded neurons. The neurons
have been randomly distributed around their corresponding
recording electrode, within a radius of 50 µm, as this is the
expected sensitivity range of MEA electrodes. Figure 5C reports
the corresponding graph-based schema of the reconstructed
adjacency matrices in B for week 1 and 4, respectively. Both
descriptions clearly demonstrate maturation of the network and
increase in overall connectivity, as well as the formation of a few
highly connected sub-networks within the culture.

To generate a more quantitative estimation of these network
features, we used a graph-theory based analysis (Figures 5D–G).
The larger number of active neurons and detected links in most
developed networks is in accordance with the increasing levels
of activity of the culture at later time points (Figure 5D). We
observed that during spontaneous activity, the in- and out-
degrees for different neurons were almost equally distributed
among the active neurons, and showed an increasing trend as a
function of the culture’s age. Moreover, we observed formation
of a specific network topology characterized by a connectivity
highly centralized around a few super-hubs reciprocally linked
to neighboring cells (large average degree), and a few remaining,
poorly connected neurons (small average degree) (Figures 5E,F).
These data confirm what is visually described in the connectivity
maps and correlate with the network burst activity in the way the
connectivity topology changes from random and unorganized,
with most of the neurons isolated and poorly connected, to
extremely structured and centered around a few hubs, a topology
that becomes more evident with maturation. We also studied
the integration and segregation properties of cultured hiPSC-
derived neural networks (Figure 5G). The mean path length is
fairly constant and does not change for increasing numbers of
new connections. On the other hand, the mean CCo is low
and decreases with the level of maturation of the network. This
feature is indicative of more favored segregation vs. integration,
with formation of highly integrated network units (hubs),
similarly to observations reported by Livesey and colleagues
(Kirwan et al., 2015) using rabies-virus-based trans-synaptic
tracings of hiPSC-derived neuronal networks.

3.3. Correlation Between Inferred Network
Degree and Signaling Probability Estimate
in MEA Data
We explored the functional role of the active neurons
identified in the reconstructed effective network by computing

a possible estimation of their probability to be nodes “initiator,”
“propagator,” or “receiver” (see section 2.2.6). We then compared
this probability with the number of connections in the inferred
effective connectome. Figure 6 shows the correlation between
the estimated probability that a neuron is a “receiver” and
the computed in-degree fraction (in-degree/(in-degree + out-
degree)) of that neuron in the reconstructed network. The plots
combine all the results from all wells, recorded at week 1,
2, 3, and 4, respectively. Neurons with in-degree fraction 1
(sink) and 0 (source) have been highlighted in blue and red,
respectively. The plots show a linear correlation between our
receiver probability estimate and the reconstructed connections,
which further validates the accuracy of our inference technique.
This linear correlation is strong at the early stages (explained
variance R2 = 0.9508 and 0.5738, at week 1 and 2) and tends to
change at the later stages (explained variance R2 = 0.1409 and
0.1318, at week 3 and 4). These results suggest that our estimate
of receiver probability is good and describes well the causality
defined by the reconstructed connectivity when the network is
less mature and the spontaneous activity is still low and non-
synchronized. In this case, source (in-degree = 0) and sink (in-
degree = 1) neurons are all in the corners of the plots since
there is high correspondence with the receiver probability. For
more developed networks expressing bursting and synchronized
activity, the receiver probability estimate is no longer accurate
because, due to the presence of bursts, the latency between the
spikes in a given window does not capture well the direction
of activation of neurons. This can be observed in Figure 6A, at
week 3 and 4 where the receiver probability estimate accumulates
around 0.5 while the in-degree fraction distributes across all
range. This reaches the extremal discrepancy for source and
sink neurons that still show receiver probability around 0.5
(red and blue data points). This is a clear fingerprint of strong
bursting activity. Furthermore, it is worth highlighting that, even
though the discrepancy is visually strong, the linear regression,
surprisingly, still shows a near perfect 45-degree slope.

Further, we explored whether a different strategy for the
calculation of the correlation peaks would change the outcome
of our analysis, especially in the bursting regime which is
well recognized to bias correlation studies by shadowing the
causal relationships between neuron pairs (Das and Fiete, 2020).
Inspired by previous works from different groups (Capone et al.,
2015), we addressed this problem by adding the implementation
of the Pearson correlation to calculate the correlation peaks:

ρX,Y = Cov(X,Y)/σXσY (10)

This implementation can produce a different outcome of the
super-selection rule especially in the presence of bursts. To
test this approach, we used synthetic data from the Izhikevic
model and compared the reconstruction performance with or
without the use of Pearson correlation for random neuronal
networks of different sizes (n = 10, 20, 50). For this set
of synthetic data, the results (see Supplementary Figure 8 in
Supplementary Material) did not show any relevant difference
in accuracy and in 1 = (TP − FP)/(nc) mainly because,
for these networks, the cross-correlation based reconstruction
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FIGURE 6 | Correlation between inferred network degree and signaling probability estimate in multi-electrode array (MEA) data. (A) Correlation between the receiver

probability estimate (x-axis) and the in-degree fraction (y-axis). Each data point in the plots represent an active neuron in a reconstructed well connectivity with

computed estimate of probability of being a receiver node and in-degree fraction. The plots combine all the results from 20 wells, recorded at week 1, 2, 3, and 4,

respectively. Neurons with in-degree fraction 1 (sink) and 0 (source) have been highlighted in blue and red, respectively. The gray curve is the linear regression.

(B) Correlation between the receiver probability estimate (x-axis) and the in-degree fraction when the connectivity is inferred via correlation peak selection based on

the Pearson correlation (y-axis).

already reached maximum performance values that the Pearson
approach could not improve further.

In Figure 6B, we repeated the analysis explained above
for network reconstruction based on the Pearson correlations.
The linear regressions suggest a behavior similar to the one
observed in Figure 6A, with decreasing correspondence between
the receiver probability and the in-degree fraction as the
neuronal network turns to a bursting system. However, Pearson
correlations provide more spreading along the in-degree range,
suggesting a better filtering of the effect of the burst activity on
the amplitude of the correlations as corroborated in literature
(Das and Fiete, 2020).

4. DISCUSSION

In this work, we demonstrated a new model-free based approach
to infer effective—active, direct, and causal—connections from
in vitro neuronal networks recorded on MEAs. Our algorithm
offers several fundamental differences resulting in critical
advancements compared to the state-of-the-art connectivity
techniques, including correlation and transfer entropy variants
(Pastore et al., 2016; de Abril et al., 2018). A typical challenge
of model-free methods in the reconstruction of effective
connectivity is to detect the causality of signaling in the network

and distinguish confounding apparent connections (common
input or common output) and multi-neuron pathways from
direct links. Here, we defined a fundamental mathematical rule
that decomposes the misleading temporal information contained
in the network’s temporal correlations into a set of direct,
causal dependencies between the circuit’s neurons via selective
identification and elimination of FP connections (Figure 2).

Our method does not require any post-inference thresholding
and it only depends on three fundamental parameters, T, σ , and
ǫ, which can be easily obtained as explained in the text, and whose
choice will be automated in future software release.

Evaluation of the performances on synthetic data from
simulated random networks of neurons demonstrated a number
of critical improvements compared to published algorithms by
showing inference of causal, uni-, and bi-directional connectivity
with a computational accuracy close to 1 and an excellent rate of
rejection of FP connections (Figure 4).

In terms of scalability, our algorithm matches the scalability
properties of most of the state-of-the-art connectivity methods
which, being based on pairwise statistical and correlation studies,
scale with a practical computational complexity of the order of
O(n2), where n is the number of neurons. More specifically,
we have three main routines whose complexity should be
assessed: the computation of pairwise correlations, the peak

Frontiers in Neuroscience | www.frontiersin.org 14 July 2021 | Volume 15 | Article 647877

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Puppo et al. Reconstruction of Causal and Direct Connectivity

detection algorithm, and the detection of FP connections. In
order to do this, let S be the number of time samples of a
recording for each neuron. The bare complexity of the correlation
computation is O(n2Slog(S)) since it involves FFT evaluations.
The complexity of the peak detection algorithm, on the other
hand, is O(n2S). Finally, the computational complexity of the
brute force detection of FP connections is O(n3). However, a
closer look at these estimates shows that the computation of
the correlation is the practical leading term. In fact, it has a
larger pre-factor with respect to the peak detection, which results
from the several algorithm steps included in the FFTs. Moreover,
the peak detection can be restricted to just a much smaller
time interval thus reducing the O(n2S) complexity to O(n2S′)
with S′ ≪ S. Finally, the computation of correlation triangles is
negligible with respect to the computation of the correlations
for practical cases. In fact, if we consider a standard neuronal
recording, this typically has more than 106 time samples. Since
the computational complexity of all correlations is O(n2Slog(S)),
unless we are dealing with more than millions of neurons,
this is usually much larger than n3 three terms floating point
operations needed to assess the FP connections. Moreover, with
a more sophisticated approach based on dynamic programming
we could compute triangles with a reduction of the O(n3)
complexity to O(n2) for practical cases. However, the dynamic
programming implementation details is out of the scope of
this paper, even if a basic implementation is included in our
software (https://github.com/fpuppo/ECRtools.git). Comparison
with other techniques such as partial correlation, matrix
deconvolution, or deep learning, which we found to be
the only approaches able to distinguish between apparent
connectivity (see Figure 1), shows usually higher computational
complexity. For example, partial correlation yields a complexity
of O(n3S).

Importantly, in this work we did not attempt to simulate
and analyze large artificial neural networks where the number
of nodes and connections aim to mimic the massive synaptic
connections present in the brain. We simulated sparse networks
instead, having connectivity nc < ntot , and hypothesized average
constant connectivity for larger network sizes. This simplified
model was quite accurate in describing in vitro networks of
biological neurons like the cultures of hiPSC-derived neurons
we investigated (see Supplementary Figure 5). Larger networks
can be simulated and tested at higher computational expenses.
Based on observations on the algorithm performances, we expect
approximately constant performances for increasing number of
neural nodes; on the other hand, we can only speculate on
the inference properties in highly connected networks (nc ∼

ntot) because of increased difficulties in properly modeling
their simulated activity, as well as the anticipated increases in
computational power required for processing these analyses.
We expect decaying performance for networks of very high
complexity due to many overlapping correlation effects from
multiple cells, a problem that will require further investigation
and will be addressed in future studies.

As a direct example, we have used the spontaneous firing
of cultured networks of hiPSC-derived neurons to reconstruct
the corresponding connectivity maps as a function of the

network developmental stage (Figures 5D–G). The estimated
connectivity (Figure 5) combined with quantitative analyses,
such as graph-theory approaches (Figures 5D–G), enabled us
to describe the developmental progress of the cultures, thus
demonstrating the capability of detecting basic neuronal features
such as the increased synaptic connectivity and the formation
of few, highly connected network hubs. These latter are both
indexes of more mature neuronal circuits and agree well
with higher spiking frequencies and network burst generation
observed in mature neuronal cultures (Trujillo et al., 2019).

To estimate causal and direct connections in hiPSC-derived
networks, we relied on conventional spike sorting techniques
in order to decompose MEA recordings into spiking activities
corresponding to individual neurons. However, it is worth
mentioning that despite its long history and substantial literature,
spike sorting remains one of the most important and most
challenging data analysis problems in neurophysiology. Spike
sorting based on PCA and k-means clustering is one of the most
accepted methods in part due to its ease of implementation.
However, a number of different approaches have been proposed
over the years (Caro-Martin et al., 2018). Although we recognize
that the accuracy of the spike sorting procedure critically affects
all subsequent analysis (Rey et al., 2015), further treatment of
this issue is not trivial. Testing of performance and validation
of the connectivity algorithm requires knowledge of the “ground
truth” (i.e., knowing the identity of the neurons generating each
detected spikes), which is only really possible in synthetic models.
When applied to biological networks, our reconstruction method
assumes that the spike sorting is accurate enough to separate
the most prominent contributions in the activity of the network.
However, the higher the accuracy of the adopted spike sorting
procedure, the more precise the estimation of causal activity in
the network will be. In other words, our network reconstruction
methods scale with continued improvements in spike sorting.
Besides, although we recognize that data sub-sampling may affect
the connectivity inference (Tyrcha andHertz, 2014; Capone et al.,
2015; Huang et al., 2015), we also note that, in several studies
(Capone et al., 2015), what really matters is that the inferred
network is able to capture essential dynamic features of the
biological one, and this is not necessarily true only when the
correspondence between the inferred and the biological networks
is node-by-node and link-by-link.

Furthermore, since our algorithm fully relies on neural
recordings to estimate the effective connectivity of the network,
the connectivity inference depends on the recording technology.
MEAs devices typically available in laboratories have a low
density of electrodes (typically 8 × 8 or 64 × 64 array size),
which results in low spatial resolution of the sensitive area
(spacing between the electrodes) and low spatial granularity
in the recordings. The main consequence is reduced detection
of active neurons, which affects the accuracy of reconstructing
the real network’s activity. This sub-sampling problem has been
theoretically addressed in model-based inference techniques
(Tyrcha and Hertz, 2014; Huang et al., 2015). However, in
any model-free connectivity method, including the one we
introduce here, the reconstruction quality can only be as good
as the available measured empirical data. In our approach,
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unrecorded units and associated undetected correlation patterns
may produce a reduction in the number of computed correlation
triangles, which in turn may result in reduced filtering
capabilities. As other technologies from the Brain Initiative
(Litvina et al., 2019) and related efforts, such as the Human Brain
Project in the EU, become available online and are validated, the
methods we develop here will be in a position to take immediate
advantage of them. For example, high-density MEAs (HDMEAs)
that include tens of thousands of electrodes at cellular and
subcellular resolution (Ullo et al., 2014; Muller et al., 2015; Yada
et al., 2016; Bullmann et al., 2019) offer optimized acquisition
settings and will greatly improve the resolution and accuracy
of our approach. Complementary to high-resolution CMOS-
MEAs, high-density arrays of individually addressable nanowires
represent a viable approach to increase spatial resolution,
scalability, and sensitivity of the recordings. For example, the
system by Liu et al. (2017) can detect sub-threshold events, thus
enabling the recording of miniature post-synaptic currents that
can potentially be involved in structuring network connectivity.

Importantly, our method is scalable and can be generalized
to any kind of network, thus allowing the user to target
different problems in intact neurons, including synthetic
models as well as in vitro and in vivo systems. Of particular
relevance and as an example of an on-going effort to address
these issues, our group is exploring the use of technologies
to analyze electrophysiological recordings from 3D cultures.
We are assessing different techniques for high-density 3D
electrophysiological characterization of human-derived cortical
organoids (Trujillo et al., 2019). The application of the methods
we discuss here to the connectivity analysis of 3D neural
structures will allow us to test a variety of hypotheses about the
development of 3D neuronal networks, dynamics, and changes
that may occur under external perturbation or in disease.

A limitation of the system is the inability to detect sub-
threshold events due to the extracellular nature of the multi-
electrode array recording, and thus to investigate the potential
relationship between miniature excitatory and inhibitory post-
synaptic currents and connectivity. Recently, the application
of nanotechnology on neuronal electrophysiology has brought
about a promising solution to overcome this limitation and
to fabricate devices that are capable of detecting sub-threshold
potential (Liu et al., 2017; Wei et al., 2018; Yoo et al.,
2020). Although substantial engineering issues remain before
the potential of nano-neural interfaces can be fully exploited
(Wu et al., 2020), the future application of our algorithm to
more sensitive recordings appear to be a promising approach
for a more accurate understanding of network connectivity
as a consequence of synaptic and extra-synaptic inputs as
well as subthreshold potentials in both physiological and
pathological conditions.

Finally, in this work, we have estimated the connectivity
matrix of a sub-network of excitatory links, which have been
described as the strongest recurrent links in the neuronal
culture, major determinants of spontaneous activity (Stetter
et al., 2012). However, it is increasingly clear that inhibitory
connections play essential roles in neural dynamics. Therefore,
further work must also be done to extend this approach to

the explicit identification of inhibitory inputs and their role.
Several techniques have been proposed for distinguishing the
inhibitory and excitatory connections in the network (Peyrache
et al., 2012; Capone et al., 2015; Pastore et al., 2018). The most
direct strategy for improvement of our algorithm is by integration
of cross-correlation approaches previously investigated by other
groups (Pastore et al., 2018) with extension of the correlation
triangle rule to account for inhibition. On the other hand,
although model-based, more statistically sophisticated methods
such as Ising-like approaches (Capone et al., 2015) also contain
interesting elements, which could complement our analysis and
facilitate an improved formulation of the inference technique.

A similar problem exists to detect excitation when there
is strong tonic excitation close to saturation or persistent
bursting. In the bursting regime, a functional reconstruction
typically results in highly clustered connectivity due to the highly
synchronized firing of large communities of neurons that appear
to be all connected even though no direct synaptic connectivity
exists (Stetter et al., 2012). This is a known bias associated
with the “mean-field” component of the population activity that
partially shadows the causal relationships between neuron pairs
(Das and Fiete, 2020). In our method, the bursting regime
can induce an increase in the number of computed correlation
triangles with potential underestimation of FP connections
due to the large number of apparent correlations between
synchronized cells. However, since the Izhikevich model we
used for validation includes also bursting neurons, we think
that the method here proposed can already behave quite well
under bursting conditions too. Nevertheless, we are currently
investigating a novel approach to improve the accuracy of
estimation of connectivity between bursting neurons; however,
this problem remains a matter for future work.

5. CONCLUSIONS

We have presented an innovative approach to map the effective
connectivity of neural networks from multi-electrode array data.
The tool that we have developed offers critical improvements
over available methods for estimating functional connectivity.
Notably, our connectivity algorithm succeeds in detecting direct
connections between neurons through amathematically rigorous
selection scheme that distinguishes between apparent or non-
direct links and direct ones, therefore enabling inference of
directed causal relationships between connected neurons. In
addition, it has good scaling capabilities and can be further
generalized to any kind of network, thus allowing to target
different problems in intact neurons, synthetic models as well
as in vitro and in vivo systems. As novel electrophysiology
technologies come online and are validated, the methods we
presented here will be in an immediate position to take
advantage of them, resulting in fundamental improvements in
spatial resolution and reconstruction accuracy. Furthermore,
our algorithm can be further extended, improved, and possibly
integrated with already in-use techniques to overcome important
limitations such as the detection of inhibitory connections and
the inference of effective connectivity in the bursting regime.
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Importantly, spatiotemporal information is implicitly
contained in the estimated connectivity and delay map; we
expect therefore that, when used in combination with novel
computational methodologies (Budd et al., 2010; Puppo
et al., 2018; Silva, 2019), our method will help reveal more
fundamental network properties crucial to the understanding of
the relationships between network topology, dynamic signaling,
and network functions in healthy and disease models.

Furthermore, it will be broadly applicable to experimental
techniques for neural activation and recording, increasing its
utility for the analyses of spontaneous neural activity patterns,
as well as neuronal responses to pharmacological perturbations
and electrical and optogenetic stimulations (Boyden et al., 2005;
Hochbaum et al., 2014; Muller et al., 2015; Thunemann et al.,
2018; Nguyen et al., 2019).
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