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Abstract

Despite advancements in the development of cell-based in-vitro neuronal network models, the lack
of appropriate computational tools limits their analyses. Methods aimed at deciphering the effective
connections between neurons from extracellular spike recordings would increase utility of in-vitro lo-
cal neural circuits, especially for studies of human neural development and disease based on induced
pluripotent stem cells (hiPSC). Current techniques allow statistical inference of functional couplings
in the network but are fundamentally unable to correctly identify indirect and apparent connections
between neurons, generating redundant maps with limited ability to model the causal dynamics
of the network. In this paper, we describe a novel mathematically rigorous, model-free method to
map effective - direct and causal - connectivity of neuronal networks from multi-electrode array
data. The inference algorithm uses a combination of statistical and deterministic indicators which,
first, enables identification of all existing functional links in the network and then, reconstructs the
directed and causal connection diagram via a super-selective rule enabling highly accurate classifi-
cation of direct, indirect and apparent links. Our method can be generally applied to the functional
characterization of any in-vitro neuronal networks. Here, we show that, given its accuracy, it can
offer important insights into the functional development of in-vitro iPSC-derived neuronal cultures
by reconstructing their effective connectivity, thus facilitating future efforts to generate predictive
models for neurological disorders, drug testing and neuronal network modeling.

Keywords: neural network, effective connectivity, functional connectivity, causality, apparent
connectivity, correlation, MEA, iPSC, development

1. Introduction

In-vitro cultures of primary neurons can self-organize into networks that generate spontaneous
patterns of activity [1, 2, 3], in some cases resembling aspects of developing brain circuits [4, 5]. The
emergent functional states exhibited by these neuronal ensembles have been the focus of attention
for many years [6, 7] as they can be used to investigate principles that govern their development
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and maintenance [8, 9] and to produce biological correlates for neural network modeling [10, 11]. In
humans, in the absence of intracranial recording electrodes, neither physiological nor pathological
network activity can be studied in vivo. The introduction of human induced-pluripotent stem cell
(hiPSC) technologies [12, 13] opened the possibility to generate in-vitro neuronal networks in typical
[14, 15], as well as patient-specific genetic backgrounds [16, 17, 18, 19, 20, 21], demonstrating the
potential to reproduce key molecular and pathophysiological processes in highly controlled, reduced,
experimental models that enables the study of neurological disorders and the discovery and testing
of drugs, especially in the context of the individual patient [22, 23, 24].

One common approach to obtain information from in vitro neuronal networks is to record their
activity via multi-electrode array (MEA) or calcium fluorescence imaging and then use network
activity features to describe their physiology. One main limitation, however, is that these high-
dimensional data, which report about the information representation in the network, do not translate
into a clear understanding of how this representation was produced and how it emerged based on
neuronal connectivity [25]. The synchronization of spontaneous spike trains among different MEA
sites or neurons, also referred to as network bursting, is an example of observed neural behaviors
widely reported in the literature. The generation of network bursting in an in vitro neuronal culture is
evidence that the neurons are synaptically connected. However, the extracellular nature of the MEA
recording does not provide information about how neurons are connected and how signals propagate
between them, such that computational analyses are necessary to reconstruct their complex dynamic
patterns.

Knowing how neurons are connected and how they exchange information in complex, dynamic
patterns can be useful for investigating neural mechanisms as it allows for identification of func-
tional states and directly relates their emergence to the underlying wiring diagram [11]. This kind of
analysis presents several challenges as it requires not only identification of functional relationships
between cells, but also reconstruction of the dynamic causality between directly linked neurons that
are simultaneously involved in several different signaling pathways. This is the difference between
functional and effective inference: the first only reports about statistical dependencies between cells’
activities without giving any information about specific causal effects existing between two neurons
or the underlying structural model [26]; the second attempts to capture a network of effective - direct
and causal - effects between neural elements [27].

Only model-based approaches [25, 28] have been proposed for inference of effective connectivity.
Among them, dynamic causal modeling (DCM) [29] and structural equation modeling [30] variants
have shown best performances (Figure 1). However, these methods estimate the effective connec-
tivity of a measured neuronal network by explicitly modeling the data generation process, i.e. only
the connectivity of a simulated network model is inferred without any theoretical guarantee about
its accuracy and its ability to correctly estimate the connectivity of the biological network [25, 26].

Because of this limitation, descriptive, model-free approaches are usually preferred as they are
easy to implement, rely on a limited number of assumptions that are directly related to the investi-
gated neuronal network, and can be easily tested [25, 28]. A number of model-free methods proposed
for reconstructing the connectivity of in vitro neuronal networks [31] have been previously reviewed
[32] and tested [26] (Figure 1). However, because they rely on purely statistical indicators, they
can only infer how neurons are functionally coupled, but lack the ability to identify the network of
effective interactions between neurons by either missing the directionality or confounding indirect
and apparent links from direct ones. Directionality conveys the causality of signaling in the net-
work, i.e. which neural element has causal influences over another; indirect connectivity indicates
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Figure 1: Classification of most common connectivity inference methods in terms of causality and
detection of direct links. On the x -axes, the graph shows a scale of causality which refers to the ability of a
given connectivity method to infer or not the directionality of the functional connections between neurons. On the
y-axes, it visually quantifies the capabilities of one approach to detect direct links between neurons by identifying and
discarding multi-neurons connections and apparent ones. Indicators that are acausal and do not infer directed links
can only report about functional connectivity (light yellow); indicators which contain information about direction of
interaction and direct neuron-to-neuron communication are also close to the inference of effective connectivity (orange
color). Most common model-free techniques are indicated with black dots. Model-based methods are reported with
blue triangles and their ability to infer effective connectivity is negatively weighted by the impossibility to test their
performances. The super-selective correlation approach we propose is reported in red. The graph is meant for visual
quantification and do not contain precise quantitative information about differences between methods.
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the presence of multi-neurons pathways between two cells; apparent connectivity refers to the ability
to disambiguate the confounding effects of common inputs from other participating neurons, that
are manifest as functional connectivity, from those induced by neuronal connections between two
units [33].
Methods such as correlation [34], coherence [35, 36, 37], mutual information [31, 38, 39], phase and
generalized synchronization [39, 40], and joint entropy [31] describe only statistical dependencies be-
tween recorded neurons without carrying any information of causality or discriminating direct and
indirect effects. Techniques such as cross-correlation [31, 41], directed and partial directed coherence
[42, 43], transfer entropy [31, 41, 44] and Granger causality [45, 46] are examples of causal indicators
as they provide inference of directionality of dependence between time series based on time or phase
shifts, or prediction measures. However, because these operators rely only on pairwise statistical
comparisons and treats pairs of neurons independently, they show the same limitations when dealing
with indirect connections and external inputs. Only a few techniques can compete in the challenge
of inferring the effective connectivity of a network. Partial-correlation [31, 47], which takes into ac-
count all neurons in the network, showed best performance in detecting direct associations between
neurons and filtering out spurious ones [48]. The most significant limitation of this solution is its
high computational cost. Moreover, as the partial correlation matrix is symmetric, this method is
not useful for detecting the causal direction of neuronal links. It also does not attempt to infer
self-connections [25]. A combination of correlation and network deconvolution was used by Magrans
and Nowe [49] to infer a network of undirected connections with elimination of arbitrary path lengths
caused by indirect effects. However, this method also can not identify directions of connections and
the singular value decomposition of network deconvolution has an extremely high computational
complexity [48]. A convolutional neural network approach [50] showed the same limitations in com-
putational complexity and undetected self- and causal connections. Figure 1 graphically summarizes
the inference capabilities of the state-of-the-art connectivity methods.

Here, we propose a novel, mathematically rigorous method that uses a model-free approach (i.e.
does not depend on a set of underlying assumptions about the biology of participating cells) to de-
compose the complex neural activity of a network into a set of numerically validated direct, causal
dependencies between the active component neurons that make up the network. The method is not
purely statistical, like those previously proposed (Figure 1). Our algorithm combines the inference
power of statistical approaches (signal-, network- and information theory- based) with the rigorous-
ness of deterministic measures (a mathematical super-selection rule on top of the statistics) to derive
causal rather than functional links through association of cause and effect and distinction between
indirect and apparent links from actual one-to-one neural interactions. The analysis results in a
fine-tuned selection of correlation peaks which maps to a subset of direct causal dependencies that
more realistically describe the effective connectivity of the network (Figure 2).

To evaluate the performances of our method, we built a numerical model by designing and simu-
lating an integrate-and-fire neuronal network mimicking the activity of in vitro cultures of neurons,
and demonstrated important improvements, relative to the state-of-the-art connectivity methods, to
network inference accuracy due to a deterministic component of our method capable of identifying
false positive connections.

Importantly, our connectivity algorithm yields a computational complexity that scales as O(n2).
This complexity is typical of connectivity methods based on pairwise statistical studies which, con-
trary to our method, are unable to detect false positive connections. In reconstructing the direct
connectivity of a network, the technique we propose competes with partial correlation, but this latter
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Figure 2: Connectivity reconstruction via detection of correlation triangles and classification of indirect
and apparent links. 1. Given three neurons 1, 2 and 3, our algorithm searches, in time, for all correlations
between them by computing the pairwise correlation functions R1,2, R2,3 and R3,1. In this representative example,
the algorithm detects two correlation peaks for each pair of neurons and associates the corresponding delays of
interactions (τ−1

1,2 , τ+1
1,2 , τ−1

2,3 , τ−2
2,3 , τ+1

3,1 , τ+2
3,1 ) which are defined by the location of the peaks with respect to the origin

of the x axis. 8 possible combinations of interactions can occur in time between the three pairs of neurons. These
correspond to the 8 correlation triangles shown on the right side of the panel. 2. Among the correlation triangles, the
algorithm detects 2 critical cases (|τ−1

1,2 + τ−2
2,3 + τ+1

3,1 < ε| and |τ+1
1,2 + τ−1

2,3 + τ+2
3,1 < ε|) and identifies the peaks relative

to an indirect (multi-neurons path) and an apparent (common output) connection by searching for the ones with
smaller amplitude. The smallest peaks (τ+1

3,1 and τ+2
3,1 ) are discarded from the analysis. 3. The correlation triangles

are functional to the estimation of the direct connections in the network. Because no more correlation exists between
neuron 1 and 3, the estimated effective connectivity includes only the direct links for (1, 2) and (3, 1): two connections
with opposite directionality exist between neuron 1 and 2 because positive and negative correlation peaks are detected
in R1,2 (τ−1

1,2 and τ+1
1,2 ); one link connects neuron 2 to neuron 3 as a result of the positive correlation peaks in R2,3

(τ+1
3,1 and τ+2

3,1 ).
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yields a complexity of O(n3).

We show an experimental application of our approach to spontaneously generated in vitro net-
works of human iPSC-derived neurons cultured on MEAs providing an analysis and interpretation
of the physiology not possible otherwise. We describe the temporal evolution associated with the
connectivity and dynamic signaling of developing hiPSC-derived neuronal networks, including in-
creasing synchronized activity and the formation of small numbers of hyper-connected hub-like nodes,
as similarly reported by others [14, 20]. These results further support the performance quality of our
approach and provide an example of how this connectivity method can be used to characterize net-
work formation and dynamics, thus facilitating efforts to generate predictive models for neurological
disease, drug discovery and neural network modeling.

2. Theoretical framework for connectivity reconstruction

2.1. Algorithm outline

The proposed analysis takes, as inputs, electrophysiological recordings from hiPSC-derived neu-
rons on MEAs and decomposes the collective firing properties into direct (one-to-one) and causal
(directional) relationships between all participating neurons by means of a multi-phase approach
that identifies and discards any correlation link that does not directly relate to a direct interaction
between two cells.

The core of our methodology is graphically described in Figure 2 and includes three main
phases: 1. statistical, correlation-based reconstruction of functional connectivity (Section 2.2; 2.
mathematically-rigorous super-selection of direct links via identification of peaks related to indi-
rect and apparent links (Section 2.3) and 3. reconstruction of directed causal connectivity between
neurons (Section 2.4).

1. The functional connectivity (statistical dependencies) of a network is computed via pairwise
correlation studies. Functional interactions between neurons are represented by correlation
peaks and their delays τ (see Section 2.2.1). The algorithm constructs correlation triangles
by considering all possible combinations of correlation delays for any possible triplet of neurons
(Figure 2.1). Importantly, correlation triangles do not refer to any three-neuron physical
connection, sometimes referred to as “neural triangles” in the literature and known to be highly
represented among possible neural interaction patterns [51, 52]. Here we define a correlation
triangle as a mathematical object that our algorithm uses to classify functional interactions
based on all possible triplets of correlation delays that can be formed in the network. Therefore,
correlation triangles exploit the entire signal history of neurons in order to determine the
correlation peaks.

2. Correlation peaks associated with indirect or apparent links in corresponding correlation tri-
angles are discarded from the analysis by means of a mathematical super-selection rule which
deterministically classifies the type of dependence between each triplets of neurons (Figure 2.2).
The super-selection rule is formally presented in Section 2.3. Here, it can be summarized as
follow. If a correlation triangle is made up of three correlation delays that are the combination
of one another (see Section 2.3.1), one of the component correlation delays is either represen-
tative of an indirect link (two neurons connected but only through an intermediary cell) or
of an apparent link (functional coupling due to synchronous activity of two neurons on the
same output neuron); therefore, this correlation delay does not refer to an effective connec-
tion and must be discarded. When the algorithm finds a correlation triangle which satisfies
this condition, it deepens into the classification of the involved correlation delays and select
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the correlation peak to remove based on the peaks amplitude (see Section 2.3.2 for a detailed
explanation). For example, in Figure 2.2, the algorithm identifies an indirect link between 1
and 3 (a multi-neuron pathway), and an apparent link between 1 and 3 (correlation due to a
common output). The correlation peaks corresponding to these links in the correlation trian-
gles are discarded from the analysis. Importantly, the algorithm removes correlations from the
analysis, but does remove inferred physical connections.

3. Only when all correlation peaks between two neurons are discarded, the algorithm recognizes
that a specific interaction is only apparent and deletes the corresponding connection. For
example, in Figure 2.3, there is no existing connection between neurons 1 and 3. The estimated
effective connectivity includes only direct links for (1, 2) and (2, 3): two connections with
opposite directionality exist between neuron 1 and 2 because positive and negative correlation
peaks are detected in R1,2 (τ−11,2 and τ+1

1,2 ); one link connects neuron 2 to neuron 3 as a result

of the positive correlation peaks in R2,3 (τ+1
2,3 and τ+2

2,3 ). Section 2.4 formally presents the
reconstruction rule of our algorithm.

The following sections describe the mathematical details of the developed technique. The con-
nectivity reconstruction algorithm and associated functions for performance evaluation were imple-
mented in Matlab and code will be made available online.

2.2. Reconstruction of functional connectivity

2.2.1. Temporal correlations

To identify the temporal correlations between the activity of all pairs of N recorded neurons j, k ∈
{1, ..., N} in the network, we computed the pairwise correlation function between the corresponding
signals sj and sk

Rjk(τ) =

∫
sj(t)sk(t+ τ)dt (1)

In this formulation, the indexes j and k are restricted to k > j in order to avoid unnecessary
calculation of auto-correlations (j = k) and explicitly calculate correlations only for k > j because,
thanks to the symmetry of (1),

Rjk(τ) = Rkj(−τ). (2)

Using the Fast Fourier Transform (FFT) and the correlation theorem, computing correlations
in Eq. (1) can be efficiently performed in O(n log n) with n the number of samples composing the
signals sj . In fact, if F is the FFT operator and F−1 the corresponding inverse, the correlations
can be efficiently computed as Rjk(τ) = F−1[F [sj ] · F [sk]] [53].

Peaks of Rjk(τ) represent correlations among neurons j and k. Their amplitude can be regarded
as a measure of the level of correlation between the spikes in their registered firing activities. The
higher the amplitude of a peak in Rjk(τ) (if any), the higher the probability that there is a statistical
dependency between neuron j and neuron k. However, the existence of a functional coupling between
two neurons does not necessarily imply that there is an effective connection between them. For
example, the activity of any of the two neurons can have an effect on the other through one or more
interconnecting cells between them.
The location of each correlation peak with respect to the origin indicates the temporal delay τpeakjk

between the activity of neuron j and neuron k. The sign of this delay, i.e. whether the peak is found
on the positive or the negative quadrant of the correlation function, defines the directionality of the
interaction that, in the ideal case of a direct connection, suggests which is the pre- and post-synaptic
neuron in the interaction.
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2.2.2. Peak detection

We implemented a peak detection algorithm applied to Rjk(τ) to identify all existing functional
correlations between any pair of neurons (j, k) in the network and to discern the directional depen-
dency between their spiking activities (Figure S.2).

As part of the peak detection phase, we used a smoothing Gaussian filtering [54] applied directly
to Rjk(τ) to remove high frequencies and facilitate the proper identification of correlation peaks.

As introduced above, we assume that a correlation peak in Rjk(τ) represents a potential con-

nection between j and k and that τpeakjk is the signal propagation delay between them. We define a
temporal range (−T,+T ) over which to perform the peak search (Section 2.4 describes the details
of parameter tuning).

For a given parameterization of the Gaussian filter (see Section 2.4) and a defined time window
(−T,+T ), the peak detection algorithm allows us to identify a list of pairwise temporal delays τhjk
between all pairs of neurons (j, k) in the observed network, with h ∈ {−hn, ...,−1, 1, ..., hp}jk where

hn is the number of peaks with τhjk < 0 and hp the number of peaks with τhjk > 0. Peaks identified
on the positive ({1, ..., hp}jk) or negative ({−hn, ...,−1}jk) side indicate whether the spiking activity

of neuron j has temporally occurred, respectively, before (τhjk > 0) or after (τhjk < 0) the firing of
neuron k. Finally, from Eq. (2) the following relation holds:

τhjk = −τ−hkj . (3)

2.3. Detection of false positive connections

Correlation peaks detected in Rjk(τ) represent any type of statistical dependence between two
neurons. Peaks relative to functional dependencies due to multi-neuron connections or apparent
coupling are the main cause of false positives generated in the connectivity reconstruction process
and a major source of error in competing methods. To address this, we introduce a framework that
identifies the effective network configuration via implementation of a deterministic super-selection
rule over all the detected correlation triangles.

2.3.1. Pure direct connections and correlation triangles

In order to identify possible dependencies between correlations, i.e., if a correlation among neu-
rons is not direct but results from a third party correlation, we consider cyclic triplets of correlation
delays (τhjk, τ

h′

km, τ
h′′

mj). Here cyclic means that each neuron’s index appears in two ordered neuron’s
index pairs, once as the first index and once as the second index. This cyclicity directly implies that,
if we had

τhjk + τh
′

km + τh
′′

mj = 0, (4)

one of the three delays would result from signals that correlate through an intermediary signal as
shown in Fig. 2.

However, since the correlations among the neurons’ firing are not Dirac deltas but rather Gaussian-
like, we can define a threshold ε > 0 such that a weak version of (4) still holds. Therefore Eq. (4)
reads

|τhjk + τh
′

km + τh
′′

mj | < ε (5)

This equation identifies the case where there is a near-perfect match between the correlation delay
of each of the three cells and represents the first step in the proposed super-selection algorithm.
The definition of “near-perfect match” is based on the choice for the parameter ε which represents
the acceptable degree of temporal approximation when computing Eq. 5 (see Section 2.4 for an
estimation and a discussion on ε). In ideal conditions, ε→ 0 and Eq.(5) reduces to Eq.(4).
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Finally, it is useful to define a correlation triangle as the triplet (τhjk, τ
h′

km, τ
h′′

mj) of cyclic correlation
delays that the algorithm detects for any pair of neurons in the network. The algorithm aims to
construct njk × nkm × nmj correlations triangles given by all possible combinations of correlation
peaks of any triplet of neurons’ pairs (Figure 2). To have a complete picture of our method, we
can define the directed graph G = (V,E) whose vertexes V are the active neurons and edges E
are the active synaptic connections. This definition implies that our algorithm reconstructs only
the connections between the neurons in the culture whose activity has been recorded, and contains
no reference to the full structural connectivity of the biological network under study. Within this
framework, each correlation triangle shares up to three edges with G, and the union E′ of all τhjk
defines the direct graph G′ = (V,E′). It follows that

G ⊆ G′. (6)

G′ can overestimates G because it could include connections that are false positives (Figure 2A). For
this reason, we need to determine an efficient minimization scheme to reduce G′ as close as possible
to G.

2.3.2. Edge covering minimization

In order to reduce G′ to G it is sufficient that for each correlation triangle satisfying Eq. (4) (or
Eq. (5)) we identify the dependent τhjk and remove it from E′. Therefore, the challenge is to find a

discrimination rule that allows us to select the correct τhjk in the correlation triangles that satisfy
Eq. (4) (or Eq. (5)).

By considering the nature of neuronal signals, we can define the discrimination factor based on
the amplitude Ahjm of correlation peaks. In fact, a neuron is equivalent to an input-output object
that generates an output signal sout(t) either independently or dependently on an input signal sin(t)
coming from another neuron. If sout depends on sin, the two signals are not perfectly synchronized
but are often noisy (have a phase noise) resulting from the intrinsic excitability properties of the
neurons. For example, when an incoming spike train from an input neuron activates an output
neuron, the timing of the output spiking depends on many biochemical factors including for example
the state of voltage gated ion channels. The result is that the signal of the output neuron is never
triggered at the same exact delayed time, but varies. The larger the variation of the delayed timing
between the input and the output neurons, the larger the phase noise in the associated correlation
peak which will have smaller amplitude and larger standard deviation than the correlation among
neurons with input and output signals without phase noise and perfectly synchronized. Moreover, if
the signals belong to two neurons that are interconnected via an intermediary cell, the phase noise
is amplified and the correlation peak is even shorter (low amplitude) and wider (large standard
deviation).

Therefore, within this picture, we can establish the second step in the super-selection algorithm
as:

Given a correlation triangle (τhjk, τ
h′

km, τ
h′′

mj), the delay associated with the smallest correlation
peak amplitude

min(Ahjk, A
h′

km, A
h′′

mj) (7)

estimates the false positive connection and is discarded from E′.

In the ideal case, i.e. without errors and approximations, this super-selection scheme eliminates
all indirect correlations, and therefore reduces G′ exactly to G.
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Figure 3A reports a real case scenario of apparent connection. Three neurons (indexed 1, 4 and
12 in our model) from a recorded biological neuronal network are temporally related according to the
visualized correlation triangle schema. The algorithm checks all correlation triangles in the recorded
network and detects that this particular case satisfies Eq. 5 for a selected ε =3 ms. As explained in
the following section, ε was taken equal to the mean width of the correlation peaks. One correlation
delay matches the combination of the other two. The algorithm identifies which of the three peaks
corresponds to an indirect or apparent link by comparing the peaks’ amplitude. In the example, the
delay τ1,4 corresponds to the smallest correlation peak and is therefore discarded from the analysis,
i.e., from E′. If in the chosen temporal window that defines E′ only τ1,4 is detected for neuron 1 and
4, the final reconstruction will not include any effective connection between 1 and 4. This is a nice
example of marrying-parents effect [25] where an apparent link between neuron 1 and 4 is formed
as a result of neuron 12 firing at the same time on both of them.

2.4. Connectivity matrix reconstruction

There are three fundamental parameters that affect the inference performance of this method:

• T defines the time window (−T,+T ) over which to search for correlation peaks in the correla-
tion function Rjk. This parameter affects the filtering power of the connectivity algorithm. An
optimal T depends on the specific activity properties of the neuronal network under analysis.
To account for all direct neural interactions, the best time window should include the mean
maximum propagation delay between the neurons in the network. If the window is too small,
the algorithm can over-filter otherwise important correlation interactions.

• σ is the standard deviation (width) of the smoothing Gaussian filter and defines the frequencies
to filter out in the correlation functions. σ is important because the location of the detected
correlation peaks weakly depends on it. In fact, while the Gaussian filter is necessary for a
more reliable peak detection, the level of smoothing introduces a small temporal jitter between
the actual location of the peak and its filtered version.

• ε is the degree of uncertainty; it defines the threshold beyond which the correlation delays in
a correlation triangle can be considered the combination of one another, i.e. how similar the
combination of two correlation delays τkm and τmj must be from the direct correlation delay
τjk to estimate a three-neuron effective connectivity (see Eq. 5). Large ε values increase the
number of detected correlation peaks and computed correlation triangles with the potential
shortcoming that true positive connections are filtered out. Too small ε values are responsible
for a poor filtering of spurious delays. A good approximation for ε is the mean width of the
detected correlation peaks which represents the variance of the correlation delays. For example,
if we consider the correlation peaks from the real case scenario in Figure 3, the width of the
peaks is about 2.5 ms; therefore, we chose ε = 3 ms as threshold value for our super-selection
of direct links.

All three parameters should be tuned in order to have the best outcome from our method. The
connectivity reconstruction approach we propose here is based on a parameter variation scheme that
leads directly to the reconstruction of the effective connectivity matrix of the network.

Figure 4A-C reports about the performances of the algorithm for varying T , σ and a fixed ε equal
to the mean of the width of the peaks. The performances were assessed based on the indicators
TP/Nc (net number of true positive (TP) connections; Nc number of connections in the simulated
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neuronal network), FP/Nc (net number of false positive (FP) connections) and ∆ = (TP −FP )/Nc
(confidence indicator), as described in Section 3.1. This allowed us to individuate a range of values
for T and σ where the inference performances of the connectivity method had reached a maximum
plateau (Fig. 4D), and define the reconstruction rule of our algorithm as follows.
We consider a fixed value for ε. We then consider a collection of p points in the T -σ space (for
example the nine points in Fig. 4D,E). The boundaries for σ and T can be chosen according to their
definitions. For example, a minimum value for σ should be related to the very high frequency in the
signal while the maximum value to the frequencies in the lower middle spectrum. A minimum value
of T should be at least as large as 2-3 times the average delay among neurons to guarantee that the
relevant peak are included in the analysis. On the other hand, the maximum value for T can be
chosen as several times (for example 5-6) the average delay among neurons in order to include more
correlation triangles later used to refine the selection.

For each point p = (T, σ) we compute E′p and perform the super-selection to minimize E′p. Then,
we compute the connectivity matrix Mp (e.g. Fig. 4F - see Section 3.1 for full details) with 1 in
the (j, k) entry if the reduced E′p contains at least one τhjk > 0, and 0 otherwise. We consider only

τhjk > 0 because, according to Eq. (3), if τhjk < 0, E′p includes τ−hkj > 0 that corresponds to the same
correlations.

We can therefore define the frequency for each connection in the connectivity matrix as

fjk =
1

K

∑
p

Mpjk (8)

where K is the total number of computed points p. Each frequency computed in this way is a
binary classifier for a given effective connection between neurons j and k. Therefore, introducing
a discrimination threshold 0 ≤ d ≤ 1, for each connection we can decide if it is true or false and
compute true and false positive and true and false negative rates.

3. Experimental methodology

3.1. Numerical experiments

To develop and validate our connectivity method we used spiking data generated via simula-
tions of neuronal networks based on the Izhikevich model [55]. The original code was modified to
guarantee high levels of activity in the network as well as bursting like behavior similar to that
registered in our experiments (see Appendix A.). Figure S.1 shows an example of a random network
generated via the implemented model. We performed our analysis on sparse networks (Nc << Ntot,
with Nc the number of connections in the simulated network and Ntot the total number of possible
connections that can be formed given the input size of the investigated network model) that could
be more easily simulated and analyzed with standard computational resources and that accurately
described the sparse activity of the iPSC-derived neuronal networks we investigated. However, it is
worth noting that our model is general and not restricted to sparse connectivity.

Standard metrics for assessing the inference properties of connectivity methods are the true
positive rate, or sensitivity, TPR = TP/Nc (TP is the number of true positives; Nc is the number of
real positive connections in the data), the false positive rate, or specificity, FPR = FP/(FP + TN)
(FP is the number of false positives; TN is the number of true negative connections), and the
Accuracy ACC = (TP + FP )/Ntot (Ntot = TP + TN + FP + FN is the total number of possible
connections that can be formed given the input size of the simulated network) [56, 31]. However,
in order to have a quantitative measure of the level of confidence in the detection of TPs, we also
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Figure 4: Connectivity reconstruction and performance evaluation. (A-C) Evaluation of the performance
of the connectivity method under varying time window (−T,+T ), standard deviation σ, and for a fixed ε = 0.7
ms, for one simulated network of 10 neurons. (A) Net number of detected true positives TP/Nc. (B) Net number
of false positives FP/Nc. (C) Ratio ∆ = (TP − FP )/Nc as chosen metric for evaluation. Nc is the known total
number of connections in the simulated network. (D) Visual highlight on the behavior of ∆: a peak of performance
is reached around 65%; low variability is proven for a wide range of T and σ (plateau indicated by the red plane).
(E) Definition of a collection of K = 9 points p in the T -σ space for which the algorithm shows performances falling
in correspondence of the plateau area. (F) Abstract representation of the statistical method for recognition of false
positives connections and connectivity reconstruction. For each point a connectivity matrix Mp is computed, resulting
in the computation of K = 9 different connectivity matrices for the same input network. Combination of the results
enables computation of the frequency fjk for each connection following Eq. (8). (G) Average (N=20) performances
computed at different discrimination threshold d. The TPs remain roughly constant. On the other hand, the FPs
decrease and fluctuate around very small percentage. The algorithm filters out the FPs that fluctuate at high frequency
reaching best performances (85%) at d = 1. (H) Analysis of scaling properties. An average (N=20) number of TP/Nc,
FP/Nc, and ∆ was computed for 20 randomly generated networks with 10, 20, and 50 neurons, respectively. Very
good performances are maintained constant for increasing network size. (G) Accuracy ACC indicator computed for
different network sizes as a function of the discrimination threshold d. The error bars stand for the standard deviation
of a dataset of 20 different networks.
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defined the new indicator ∆ = (TP − FP )/Nc which generally applies to all types of networks
having different sizes and connectivities and, in computing the difference TP −FP , it highlights the
method capabilities in rejecting or not the false positive connections.

First, we used TP/Nc, FP/Nc and ∆ to investigate the effect of T , σ and ε (Figure 4A-C):
from pre-selected ranges of these parameters based on observations on the simulated activity (see
Section 2.4), we tuned T , σ and ε by looking at the method’s performance in selected ranges (T ∈
(1,5) ms, ε = 0.7 ms and σ ∈ (10−2,100) ms). Most of the performance data ∆ distributed to
form a plateau in the T and σ space (Figure 4D). In this plateau region, we defined Q=9 points
corresponding to the combinations Cσ,T = (σ, T ), with T =2.25 ms, 3.5 ms, 4.5 ms, and σ =0.013
ms, 0.1 ms, 0.63 ms and we used them to reconstruct the connectivity matrix based on the threshold
frequency fjk as formally described in Section 2.4.

The network model we adopted was used to generate spiking data useful to test and develop the
connectivity algorithm based on analysis of correlations. However, this model was not intended to be
representative of real biological neurons and does not reproduce all the specific features of electrical
recordings from in vitro neuronal cultures. As a result, the range of parameters selected for the
simulated case did not necessarily match the one for the real case and was later adapted to the data
of recorded in vitro neuronal networks (see Section 4.2). However, the same parameters showed
very high reproducibility in repeated experiments both with simulated networks and iPSC-derived
neuronal systems. Scaling performances will be discussed later in the manuscript; however, T , σ
and ε were not affected by the network size.

To validate the inference method and test its performance and scaling properties we used data
generated via simulations of network models having varying size of 10, 20, and 50 nodes. For each
network size, 20 different networks were randomly generated, simulated and then analyzed for con-
nectivity reconstruction. For each tested network we compared the adjacency matrix reconstructed
for a frequency fjk (see Section 2.4) to the input connectivity matrix of the simulated model and
computed the true positives (TP/Nc), false positives (FP/Nc) and confidence ∆ (Figure 4G-H). For
comparisons with the literature, we also calculated the Accuracy ACC = (TP + TN)/Ntot of the
investigated network model (Figure 4I).

3.2. Electrophysiological characterization of hiPSC-derived networks

Methods for generating cortical neurons from hiPSC, analyzing the composition of the resulting
cell population, and culturing on MEA are described in Appendix B and C. hiPSC-derived cortical
neurons plated on 48-wells format MEA plates were recorded every week. Recordings were acquired
with the Maestro recording system and Axion Integrated Studio (Axion Biosystems). A butterworth
band-pass (10-2500Hz) filter and adaptive threshold spike detector set to 5.5X standard deviations
were applied to the raw data. Raster plots of neuronal spiking activity were generated using Axion
Neural Metrics Tool, and the data were analyzed using Excel (Microsoft) and GraphPad Prism ver-
sion 7.00 (GraphPad Software).

We used routines implemented in Matlab to analyze the electrophysiological recordings and
identify the active neurons in the plate (Figure S.5 and Figure S.6). Figures 5A shows an example of
network activity estimated through spike sorting techniques. We used principal component analysis
(PCA) to extract similar features in the spikes’ dataset to be used for clustering. We then grouped
spikes with similar features into clusters, corresponding to different neurons. We used a k-means
clustering approach consisting of partitioning n observations into k clusters in which each observation
belonged to the cluster with the nearest mean. The clustering algorithm started with a pre-defined
k = 2. This value was then automatically updated to the best k estimate based on observations
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on the explained variance in PCA. The clustering was repeated 20 times using new initial cluster
centroid positions (no change was observed for more than 20 replicates). The final output was
the solution with lowest within-cluster sums of point-to-centroid distances. This approach did not
always lead to an exact result. For critical cases, a visual test was performed to identify outliers
among the individual waveforms from the same electrode and compared to the results of the AxIS
software (Axion Biosystem).

3.3. Connectivity analysis in hiPSC-derived cultures

We used our algorithm to estimate the connectivity in recorded iPSC-derived neuronal networks
at week 1, 2, 3, and 4 (Figure 5). We selected a range for the parameter T based on considerations of
the mean propagation delays between synaptically connected neurons. While physiologically many
variables contributes to neuronal delays, a rough indication of the delay in synaptically connected
cortical neurons was estimated to be 6 - 14 ms [57]. We estimated similar conduction velocities and
latency values in a previous study performed on basket and pyramidal neurons from the rat neocortex
[58]. Given that monolayer networks of human iPSC-derived neurons may have temporal properties
that differ from those observed in intact brain networks, we decided to avoid neglecting correlations
that could negatively bias the inference performance (see Section 2.4) by considering a larger tem-
poral window (−22, 22) ms. The reconstruction analysis was then performed with T ∈ 15, 22 ms to
include the propagation delays measured in cortical neurons (6 - 14 ms) and over-estimated values
to limit over-filtering. For σ, observations on the recordings and the level of smoothing required
for high-frequency noise removal led us to select σ ∈ (0.3, 0.8) ms. We considered a fixed value of
3 ms equal to the average width of the correlation peaks (see Section 2.4). Within this range of
parameters, we then selected Q = 9 points corresponding to the combinations Cσ,T = (σ, T ), with
T =20 ms, 17.5 ms, 16 ms, and σ =0.4 ms, 0.55 ms, 0.7 ms.

We used a graph-based connectivity analysis to estimate developing connections between neurons.
A common graph theory approach to measure the level of connectivity in a network is to investigate
its centrality, which can be described as the capacity of a node to influence, or be influenced by, other
system elements by virtue of its connection topology [59]. The simplest and most commonly used
measure of centrality is node degree, which is the number of connections attached to a node. We
calculated the average in-degree and out-degree of the vertexes of each directed graph corresponding
to a reconstructed network by calculating all incoming and outgoing connections for each network
vertex and then averaging over the total number of vertexes per network. The statistics was then
extended to 20 different wells. A node scoring highly on a given centrality measure can be considered
a hub. Here, we quantified the number of network hubs at each time point (from 1st to 4th week)
by computing the centrality of the graph and ranking the vertexes based on the number of incoming
connections. The most important vertexes were defined network hubs. We averaged this number
over 20 reconstructed networks. Finally, we studied the integration and segregation properties of the
networks [60] by computing the average Mean Path Length and Mean Cluster Coefficient (CCo). We
calculated the Mean Path Length as the shortest path distance of all vertex pairs. Infinite (absent)
connections between neurons were not considered in the calculation. With the use of Matlab routines,
we also computed the CCo as the fraction of triangles around a node, which is equivalent to the
fraction of node’s neighbors that are neighbors of each other [61].
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Figure 5: Connectivity reconstruction from neural recordings of developing hiPSC-derived neurons (A)
Raster plots of the same MEA well at different time points during development: week 1, 2, 3, and 4 after plating. The
four panels shows spiking signals from individual neurons (rows) obtained through spike sorting, PCA and k-means
clustering of 300 sec recordings. The culture develops complex network features: from weakly active and randomly
organized (individual spiking events), to very active and fully organized (network bursts). (B) Estimated effective
connectivity of the developing culture whose activity is described in panel A. Each visual map consists of a 1.2 x 1.2 mm
MEA plate (gray area), a 4-by-4 array of micro-electrodes (red circles) and the estimated directed connections (black
arrows). The active neurons are represented by black dots; they are randomly distributed around their corresponding
sensing electrode within a radius of 50 µm. (C) Directed graph relative to the culture at week 1 and week 4. The
connectivity is equivalent to the one visualized in B but, for clarity and consistency with the main text, links between
neurons are directed edges (arrows), active neurons are network nodes (blue: connected; yellow: independent). Given
a MEA well and a specific time point, indexes refer to active neurons with recorded activity reported in (A). Note,
neurons mapped at week 1 do not correspond to neurons mapped in the following weeks, although they are indicated
with the same indexes.

16

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 30, 2020. . https://doi.org/10.1101/2020.04.28.067124doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.28.067124


4. Results

4.1. Numerical results

Figure 4A-C describes how the performances vary as function of T ∈ (1,5) ms and the standard
deviation σ ∈ (10−2,100) ms, for a fixed ε = 0.7 ms equal to the width of the correlation peaks in the
simulated data. The evaluation of the minimized G′p enabled identification of 80-95% of the total
positive direct connections present in the model (TP/Nc) in a wide range of p = (σ, T ), as demon-
strated by the curve plateau in Figure 4A. The remaining percentage of connections corresponded to
the net number of false connections (FP/Nc) that the algorithm was unable to sort out (Figure 4B)
which remains very small for most parameter values. For small T (T < 2 ms), we observed a decay
in sensitivity clearly due to over-filtering of true direct correlations. When doing so, the false posi-
tives first increased due to complete failure of the algorithm in recognizing connections in the small
temporal range of observation and then rapidly decayed for very small T because no peaks could
be found. This demonstrates the importance of choosing larger values both for T and for σ rather
than smaller ones in order to avoid missing any correlation information that could negatively bias
the algorithm performances. Figure 4C shows the resulting variation of ∆ which reached a peak of
confidence at 65% and was maintained constant for a wide range of parameters.

In Figure 4G we show averaged (N=20 networks) TP/Nc, FP/Nc and ∆ as a function of the
discrimination threshold d (Eq. 8). We note that, at a high discrimination threshold, while TP/Nc
remained roughly constant (the same true positives were always detected, for all points), FP/Nc
decreased towards very small percentages, smaller than the percentage corresponding to any of the
p points. This is not surprising because the TP connections, which in most cases point to the in-
teractions between the same pairs of neurons, were always observed for all points (fjk ≈ 1, fjk is
the frequency for each connection in the connectivity matrix - see Eq. 8). On the other hand, the
false positives are just fluctuations of the algorithm as new false positive connections pointing every
time to a different pair of neurons were constantly generated by the algorithm for all points p. As
a result, the same false positive connections observed for a given pair of neurons are very unlikely
detected by many different points, and at high frequency they are filtered out.
For example, for two given points p1 and p2 the algorithm detected 15% and 20% FPs, respectively;
however, most of the FPs detected by point p1 did not correspond to the ones detected by point p2.
On the other hand, the same two points p1 and p2 detected the same TPs. Through filtering, the
TPs detected by both points are preserved, all FPs are discarded, resulting in 2% of FPs remaining,
a percentage that is smaller than any percentage associated with each of the points. Importantly,
this result demonstrates empirically our mathematical framework and it highlights its robustness in
this example application.

∆ data showed average performances of 88.3%, 88.7%, and 86.8% for varying network sizes of
10, 20 and 50 neurons, respectively, therefore demonstrating a very reliable detection of connections
and exceptional scaling properties in this example (Figure 4H).

For the sake of comparison with the literature, we show how the accuracy [56], averaged over 20
test networks with N = 10, 20, 50, respectively, changes with a selected frequency fj,k. In Figure 4I,
we observe that when the standard accuracy criteria ACC was used, the analysis quality largely
improved with a maximum reached for fjk =1. It is interesting to observe how the accuracy data
for d =1/9, i.e. prior to using the reconstruction algorithm based on the discriminator threshold
d (Figure 4I, d=1/9), showed performances already higher than 75% for a network of 10 neurons,
and even higher for larger sizes, thus exceeding the ones obtained before standard thresholding in
published connectivity methods [62]. The complete reconstruction algorithm led to a computational
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accuracy close to 100% for all network sizes due to the further statistical pruning of false positive
connections (Figure 4I, d =1).

It is worth noting that, compared to more conventional indicators, ∆ is independent of the net-
work’s connectivity. Since we made the hypothesis that each node in the network model has the
same average connectivity (preserved in- and out-degree) which does not increase with the network’s
size, we do not expect and we are not interested in seeing connectivity dependent variations. On the
contrary, other metrics, such as the Receiving Operating Curve (ROC) or the Accuracy [56], largely
change with the size and the connectivity properties of the network. For comparisons, we calculated
the Accuracy ACC = (TP +TN)/Ntot of the investigated network model. Because the definition of
this measure is based on the hypothesis that larger networks feature higher connectivity, our data
overestimate the performances, especially for high network sizes.

4.2. Measures of developing iPSC neural networks in vitro

We tested our connectivity algorithm on networks of human iPSC-derived neurons cultured on
48-well MEA plates (Axion Biosystem). The activity was recorded periodically over four weeks (Fig-
ure S.3) to investigate network development. In parallel, immunofluorescent analyses (Figure S.4)
of the composition of the neuronal population showed a mix of excitatory and inhibitory neurons,
as well as astrocytes, resembling the physiological composition of an in-vivo neural network.

The data show an increase in the level of activity as a function of the developmental phase,
as well as the appearance of repetitive firing patterns and the formation of well-organized network
bursts. Analysis of activity parameters, bursting patterns and emergence of network bursting are
presented in Figure S.3.

We used our algorithm to estimate the connectivity in the recorded iPSC-derived neural net-
works at week 1, 2, 3, and 4 (Figure 5B). Based on the position of each electrode, we estimated
the localization of the recorded neurons. The neurons have been randomly distributed around their
corresponding recording electrode, within a radius of 50 µm, as this is the expected sensitivity range
of MEA electrodes. Figure 5C reports the corresponding graph-based schema of the reconstructed
adjacency matrices in B, for week 1 and 4, respectively. Both descriptions clearly demonstrate mat-
uration of the network and increase in overall connectivity, as well as the formation of a few highly
connected sub-networks within the culture.

To generate a more quantitative estimation of these network features, we used a graph-theory
based analysis (Figure 6). The larger number of active neurons and detected links in most developed
networks is in accordance with the increasing levels of activity of the culture at later time points
(Figure 6A). We observed that during spontaneous activity, the in- and out-degrees for different
neurons were almost equally distributed among the active neurons, and showed an increasing trend
as a function of the culture’s age. Moreover, we observed formation of a specific network topology
characterized by a connectivity highly centralized around a few super-hubs reciprocally linked to
neighboring cells (large average degree), and a few remaining, poorly connected neurons (small
average degree) (Figure 6B). These data confirm what is visually described in the connectivity maps
and correlate with the network burst activity in the way the connectivity topology changes from
random and unorganized, with most of the neurons isolated and poorly connected, to extremely
structured and centered around a few hubs, a topology that becomes more evident with maturation.
We also studied the integration and segregation properties of cultured human iPSC-derived neural
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networks (6C). The Mean Path Length is fairly constant and does not change for increasing numbers
of new connections. On the other hand, the Mean Cluster Coefficient (CCo) is low and decreases
with the level of maturation of the network. This feature is indicative of more favored segregation
versus integration, with formation of highly integrated network units (hubs), similarly to observations
reported by Livesey and colleagues [14] using rabies-virus-based trans-synaptic tracings of hiPSC-
derived neuronal networks.

Discussion

In this work, we demonstrated a new model-free based approach to reconstruct effective and
functional connections from in vitro neuronal networks recorded on MEAs. Our algorithm offers
several fundamental differences resulting in critical advancements compared to the state-of-the-
art connectivity techniques, including correlation and transfer entropy variants [25, 62]. To the
best of our knowledge, model-free connectivity inference techniques are not able to reconstruct
the effective - causal and direct - connections of a recorded neuronal network because they are
either missing the causality of signaling or include confounding apparent connections (common input
or common output) and multi-neuron pathways. Here, we defined a fundamental mathematical
rule that decomposes the misleading temporal information contained in the network’s temporal
correlations into a set of direct, causal dependencies between the circuit’s neurons via selective
identification and elimination of false positive connections (Figure 2).

Our method does not require any post-inference thresholding and it only depends on three fun-
damental parameters - T , σ and ε - which can be easily obtained as explained in the text, and whose
choice will be automated in future software release.

Evaluation of the performances on synthetic data from simulated random networks of neurons
demonstrated a number of critical improvements compared to published algorithms by showing in-
ference of causal, uni- and bi-directional connectivity directly from MEA data with a computational
accuracy close to 1 and an excellent rate of rejection of false positive connections (Figure 4).

In terms of scalability, our algorithm matches the scalability properties of most of the state-of-
the-art connectivity methods which, being based on pairwise statistical and correlation studies, scale
with a complexity of the order of O(n2). On the other hand, techniques such as partial correlation,
matrix deconvolution or deep learning, which we found to be the only approaches able to distinguish
between apparent and direct connectivity (see Figure 1), have high computational complexity. For
example, partial correlation yields a complexity of O(n3).

Importantly, in this work we did not attempt to simulate and analyze large artificial neural
networks where the number of nodes and connections aim to mimic the massive synaptic connec-
tions present in the brain. We simulated sparse networks instead, having connectivity Nc < Ntot,
and hypothesized average constant connectivity for larger network sizes. This simplified model was
quite accurate in describing in vitro networks of biological neurons like the cultures of iPSC-derived
neurons we investigated (see Figure S.4). Larger networks can be simulated and tested at higher
computational expenses. Based on observations on the algorithm performances, we expect approx-
imately constant performances for increasing number of neural nodes; on the other hand, we can
only speculate on the inference properties in highly connected networks (Nc ∼ Ntot) because of in-
creased difficulties in properly modeling their simulated activity, as well as the anticipated increases
in computational power required for processing these analyses. We expect decaying performance for
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Figure 6: Graph-theory based analysis of network connectivity in developing hiPSC-derived neuronal-
network (A) Average number (N=20) of active neurons (black) and detected connections (red) in MEA wells recorded
at week 1, 2, 3, and 4 after plating. The error bars represent the standard deviations for a dataset of 20 different MEA
wells. (B) (Left panel) Statistics (N=20) on the neuronal in- (number of input connections) (blue) and out-degree
(number of output connections) (yellow). The vertical red bars stand for the standard deviations of in- and out-degree
data. (Right panel) Average maximum (continuous line) and minimum (dashed line) in- (top) and out- (bottom)
degree. The number of in- and out- degree is equally distributed with equivalent raising behavior as a function of
the cultures’ developmental stage. (C) Statistics on network hubs as a function of the culture’s age. In blue, average
(N=20) maximum hub size. We used the in-degree centrality measures for hub detection and characterization. In
yellow, percentage of neurons that function as network hubs relative to the total number of active neurons in the
well (value averaged over 20 wells). More mature networks include few super-hubs (∼5% of the total number of
neurons) with increase in size as demonstrated by the raising number of incoming connections at week 3 and 4. (D)
Characterization of network segregation and integration properties. Values in the graph correspond to the mean Path
Length (PL) and mean Clustering Coefficient (CCo) calculated for each well at week 1, 2 ,3, and 4 after plating and
then averaged over 20 wells. The error bars correspond to the standard deviation of 20 different measures. The mean
PL corresponds to the average shortest path length in the networks. Infinite (absent) connections between neurons
were not considered in its calculation. The PL is very low for highly immature cultures where only sparse activity
from individual neurons was mainly registered. It increases as soon as connections are formed (week 2) but no longer
changes with the number of new connections (week 2, 3, 4). The CCo is low and decreases with the maturation
of the network as indication of favored segregation versus integration with increasing number of independent but
highly-integrated network units (hubs).
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networks of very high complexity due to many overlapping correlation effects from multiple cells, a
problem that will require further investigation and will be addressed in future studies.

As a direct example, we have used the spontaneous firing of cultured networks of iPSC-derived
neurons to reconstruct the corresponding connectivity maps as a function of the network develop-
mental stage (Figure 6). The estimated connectivity (Figure 5) combined with quantitative analyses,
such as graph-theory approaches (Figure 6), enabled us to describe the developmental progress of the
cultures, thus demonstrating the capability of detecting basic neuronal features such as the increased
synaptic connectivity and the formation of few, highly connected network hubs. These latter are
both indexes of more mature neuronal circuits and agree well with higher spiking frequencies and
network burst generation observed in mature neuronal cultures [63].

Further work must also be done to extend this approach to the explicit identification of inhibitory
inputs and their role. We note that inhibitory connections are implicitly defined in the reconstructed
network; however, in contrast to more recent works [64], our analysis has not explicitly distinguished
them from excitatory links. We have estimated the connectivity matrix of a sub-network which in-
cludes the strongest recurrent links in the neuronal culture, major determinants of spontaneous
activity [65] that we are interested in perturbing and analyzing.

Importantly, spatio-temporal information is implicitly contained in the estimated connectivity
and delay map too; we expect therefore that, when used in combination with novel computational
methodologies [66, 58, 67], our method will help reveal more fundamental network properties crucial
to the understanding of the relationships between network topology, dynamic signaling and network
functions in healthy and disease models.

5. Conclusions

We have presented an innovative approach to map the effective connectivity of neural networks
from multi-electrode array data. The tool that we have developed offers critical improvements over
available methods for estimating functional connectivity. Notably, our connectivity algorithm suc-
ceeds in detecting direct connections between neurons through a mathematically rigorous selection
scheme that distinguishes between apparent or non-direct links and direct ones, therefore enabling
identification of directed causal relationships between connected neurons. In addition, it has good
scaling capabilities and can be further extended, optimized, and possibly integrated with already
in-use techniques. Furthermore, it will be broadly applicable to experimental techniques for neural
activation and recording, increasing its utility for the analyses of spontaneous neural activity pat-
terns, as well as neuronal responses to pharmacological perturbations and electrical and optogenetic
stimulations [68, 69, 70, 71, 72].
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[67] J. M. L. Budd, K. Kovács, A. S. Ferecskó, P. Buzás, U. T. Eysel, Z. F. Kisvárday, Neocortical
axon arbors trade-off material and conduction delay conservation, PLoS Computational Biology
6 (3) (2010) e1000711. doi:10.1371/journal.pcbi.1000711.
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