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Analysis of the dynamics of complex networks can provide valuable information. For example, 
the dynamics can be used to characterize and differentiate between different network inputs 
and configurations. However, without quantitatively delineating the network’s dynamic regimes, 
analysis of the network’s dynamics is based on heuristics and qualitative signatures of transient 
or steady-state regimes. This is not ideal because interesting phenomena can occur during the 
transient regime, steady-state regime, or at the transition between the two dynamic regimes. 
Moreover, for simulated and observed systems, precise knowledge of the network’s dynamical 
regime is imperative when considering metrics on minimal mathematical descriptions of the 
dynamics, otherwise either too much or too little data is analyzed. Here, we develop quantitative 
methods to ascertain the starting point and period of steady-state network activity. Using the 
precise knowledge of the network’s dynamic regimes, we build minimal representations of the 
network dynamics that form the basis for future work. We show applications of our techniques 
on idealized signals and on the dynamics of a biologically inspired spiking neural network.

1. Introduction

Modeling physical and information systems as networks is a powerful approach, especially for systems such as biological neural 
networks with multiple elements interacting in non-trivial and complex ways. Network abstractions are used pervasively in science 
and engineering [1–6], and both the structure and dynamics of complex networks are well studied [2,7–9]. Some examples of 
dynamic processes on networks are oscillator synchronization, diffusion processes, rumour spreading, and epidemic propagation 
[10–14].

While there are many methods to compare network structures–for example, graph edit distance, distances based on node 
degree distributions, comparing the spectral properties of the graph Laplacian–there are comparatively fewer methods capable 
of mathematically describing network dynamics in a way that allows for normalized quantitative comparison of structurally and 
dynamically heterogeneous networks [15–19]. In other words, it has proven difficult to compare two structurally similar networks 
that dynamically evolve in their own respective ways, and it remains an open problem. The challenge is that the structural 
connectivity of the network cannot fully account for the temporal evolution of the network dynamics [20]. One representation 
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of the evolving dynamical topology of a network consists of the vertices and edges derived from causal signaling paths [18], and it is 
a subset of the network’s structural connectivity. In most cases, a necessary early step in comparing dynamic topologies is to create a 
mathematical abstraction–in our case, a graph–in a defined space that allows for the computation of different metrics. However, this 
is difficult to achieve because the dynamics of the networks evolve toward some steady-state configuration over different periods 
of time and in different ways. Knowledge of the steady-state starting point and periods is necessary to ensure that the appropriate 
dynamic regimes of network activity are present during comparison.

In this work, we address this problem by solving a number of technical issues that impede normalized quantitative comparisons 
of network dynamics. First, we propose methods to find the precise transient and steady-state regimes of network dynamics using an 
efficient algorithm in a novel way. We then use information about the dynamic regimes of network activity to construct mathematical 
abstractions from which we can systematically extract the paths and patterns of the dynamics of structurally heterogeneous networks.

To start we construct a mathematical description of the network dynamics. Next, we propose methods to find the Steady-State 
Statistics (SS-S) of the network’s dynamics. For the network dynamics we chose to use dynamical rules developed by Silva in [21]

which describes in generality the signaling dynamics of biological spiking neural networks (Section 3 contains the details). The 
SS-S consists of a steady-state starting point and the steady-state period. The steady-state starting point is the time point when the 
network’s dynamics enter a periodic orbit, that is, start to repeat, and the steady-state period is the time interval, or the number of 
time steps in one period of steady-state activity. To determine the SS-S, we propose a signal summation based algorithm of complexity 
𝑂(𝑛3) and a string repetition search based algorithm of complexity 𝑂(𝑛), where 𝑛 is the number of time samples under consideration. 
Finally, upon determining what part of the system’s dynamical regime to capture, we construct a network representation of the 
dynamic topology. In this article we focus our techniques on the analysis of neural dynamics [22] and creating representations for 
machine learning [19].

The rest paper is organized as follows. In Section 2, we discuss related work. In Section 3, we describe the construction of our 
complex network model (a biologically inspired spiking neural network). Following that, in Section 4, we show how to transform 
the network dynamics into a symbolic description. Then in Section 5 we formally define the components of the SS-S. In Section 6, 
we introduce methods to find the SS-S of network dynamics. In Section 7, we show some applications of our methods: we apply 
the summation method to an idealized signal (Section 7.1), a random signal (Section 7.2), and to the dynamics of a small spiking 
neural network (Section 7.4). Then, we use the string search method the derive the SS-S of the small spiking neural network 
(Section 7.4). Using the SS-S, we show how to construct a spatial-temporal network representation of the dynamics (Section 7.5). 
This representation is a starting point for further study. To conclude, we put this work in a broader context and discuss some future 
directions.

2. Related work

In neuroscience there are many mathematical descriptions of neural network dynamics, each of which lend themselves to different 
insights. Some of the most commonly used descriptions are dynamical systems descriptions [23], network science descriptions [24,

25], topological descriptions [26], and symbolic descriptions [27]. Generally, underlying each of these descriptions is the membrane 
voltage dynamics of individual neurons or voltage readings from neural regions. The activity of neurons is commonly summarized by 
a so called “raster plot.” It consists of a set of sequences of node activations, each sequence corresponding to the membrane dynamics 
of a particular neuron. In [27], Cessac rigorously showed that there is one-to-one correspondence between the membrane dynamics 
and raster plot.

To build compact mathematical descriptions of the neuronal dynamics such as in [17,18,22–24], one must detect when the 
network of spiking neurons enters a periodic, steady-state domain of activity. In the earliest work we found [28], the authors sought 
to detect periodicity and study the steady-state dynamics in computational models of biological neural networks with the aim of 
understanding the circumstances under which neural networks could maintain ongoing activity. They estimated periodicity through 
visual observation of aggregate network activity. In some simplified models of biological neural networks, it is possible to determine 
fixed-points and periodic attractors analytically [16], but for more complex neural models, it is generally not, which thereby requires 
the use of numerical methods to approximate solutions [29,30].

In computational modeling settings where it is difficult to accurately determine the SS-S analytically [31,32], even without the 
presence of noise and where the dimensions as well as the number of data points are large, we must use efficient algorithms. While 
the data mining community has developed a vast array of periodicity detection methods for time series databases [33–35], and their 
techniques can be used in a wide variety of applications where observations and data generation processes are both noisy, their 
methods assume that the collected data is in the periodic regime. In our case modeling a biological spiking neural networks–and in 
most modeling cases–periodicity can not be assumed because there are transient and steady-state regimes of the network dynamics. 
Because the existence of a transient regime violates the underlying periodicity assumption for the data input to the methods, and 
because we are interested in explicitly delineating the transient and steady-state regimes of network activity for further analysis, we 
can not use data mining periodicity detection techniques. Instead, we use linear time algorithms from the string analysis community 
to find the precise SS-S of the network dynamics.

To detect the SS-S of network dynamics, we recast the network dynamics into a form which can be analyzed by string processing 
algorithms [36,37], more specifically, string run-finding algorithms. A string is a linear sequence of symbols drawn from some 
alphabet, and it is a common form of data storage [38]. The earliest of these algorithms was developed by Main [39], and many other 
algorithms were developed to improve computation time and space complexity [40–42]. Kolpakov and Kucherov [43,44] conjectured 
2

O(n) complexity run-finding algorithms, and Bannai etal. [45] proved the conjecture. Thorough benchmarking of commonly used 



Heliyon 9 (2023) e13913V.K. George, A. Gupta and G.A. Silva

string run-finding algorithms was done in [46]. We take advantage of the linear time algorithms [45] developed by the string analysis 
community to determine the SS-S of the dynamics resulting from a biological spiking neural network model.

3. Network description

A biological spiking neural network is a type of complex network, that is, a dynamical system composed of interacting elements. 
We model the topology of such a network as a directed graph [47]. We define a directed graph 𝐺 as the tuple 𝐺 = (𝑉 , 𝐸), where the 
set of nodes 𝑉 =

{
𝑣1, 𝑣2,… , 𝑣𝑛

}
, 𝑛 is the number of nodes in the network, 𝐸 is a set of directed edges 𝐸 ⊂ 𝑉 × 𝑉 . Nodes in the graph 

represent neurons, and edges represent axons.

The dynamics of each node in the network follows that of a so called geometric dynamic perceptron [21]. Full details and 
mathematical proofs for the node and network dynamics can be found in [21]. Briefly, this model captures the competing interactions 
of signals from upstream nodes incident on a target downstream node, along directed edges. The model takes into account how 
temporal latencies produce offsets in the timing of the summation of incoming discrete events due to the physical geometry of the 
edges as well as the network’s structural connectivity. The dynamics that result from the weighted summation process are then 
responsible for the activation of the target node. At the core of this model is the interplay between the incoming signals and the 
target node’s refractory period–an unresponsive period which can be construed as the time for internal processing at the individual 
node level. Built on this theoretical and conceptual framework, the geometric dynamic perceptron model is an extension of the 
classical perceptron model [48] and a generalization of the integrate-and-fire neuron model [49].

In our model, the 𝑖𝑡ℎ neuron takes on a binary state 𝜔𝑖 (𝑡) = {0,1} at time 𝑡. A neuron’s state is determined by its underlying 
membrane potential. An axon/directed edge from neuron 𝑗 to neuron 𝑖 is given by 𝑒𝑗𝑖 =

(
𝑣𝑗 , 𝑣𝑖

)
, where 𝑒𝑗𝑖 ∈𝐸. Due to the geometric 

embedding of the complex network, every edge in 𝐺 has an associated delay, 𝜏𝑗𝑖, which is the time it takes a signal originating at 
neuron 𝑗 to reach neuron 𝑖. In general, 𝜏𝑗𝑖 can be a function of several variables, but in this work, the delays were initialized using a 
uniform distribution then kept constant.

4. Symbolic description of network dynamics

Here we construct a mathematical bridge from a dynamical system description to a symbolic coding description following the 
work of Cessac etal. [50,51]. We let 𝑉𝑖(𝑡) be the membrane potential of neuron 𝑖 ∈ 1…𝑛 at time 𝑡. Then we construct a vector 
representation of all the node membrane potentials 𝑽 (𝑡) =

[
𝑉𝑖 (𝑡)

]𝑛
𝑖=1 at a given time 𝑡. The dynamics begin at 𝑽 (0) which is the initial 

condition of the system. The range of values of each node’s membrane potential is in the closed interval 
[
𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥

]
. A node activates 

when its membrane potential reaches or exceeds the threshold for activation Θ ∈
[
𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥

]
. For a trajectory 𝑽 , the activation times 

of neuron 𝑖 are given by:

𝑡
(𝑚)
𝑖

(𝑽 ) =𝑚𝑖𝑛

{
𝑡|𝑡 > 𝑡

(𝑚−1)
𝑖

(𝑽 ) , 𝑉𝑖 (𝑡) ≥Θ
}
. (1)

In other words, 𝑡(𝑚)
𝑖

is the time of the 𝑚𝑡ℎ activation of neuron 𝑖, which we denote as the minimum of the set of activations after the 
(𝑚 − 1)𝑡ℎ activation when the membrane voltage reaches the threshold from below. As an initial condition for the set of activation 
times, we set 𝑡(0)

𝑖
= −∞. After activation, the neuron’s membrane potential resets to some value 𝑉𝑟𝑒𝑠𝑒𝑡 ∈

[
𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥

]
:

𝑉𝑖 (𝑡) ≥Θ ⟹ lim
Δ→0+

𝑉𝑖 (𝑡+Δ) = 𝑉𝑟𝑒𝑠𝑒𝑡. (2)

Next, we generate a symbolic coding description of the system’s dynamics by formalizing the notion of a spike raster plot. A 
raster plot is a sequence {𝝎 (𝑡)}+∞

𝑡=0 of vectors 𝝎 (𝑡), where 𝝎 (𝑡) =
[
𝜔𝑖 (𝑡)

]𝑛
𝑖=1. If neuron 𝑖 activates at time 𝑡 (given by eq. (1)), 𝜔𝑖 (𝑡) = 1, 

otherwise neuron 𝑖 is quiescent and 𝜔𝑖(𝑡) = 0.

𝜔𝑖(𝑡) ∶=

{
1 if 𝑉𝑖 (𝑡) ≥Θ ,

0 if 𝑉𝑖 (𝑡) <Θ .
(3)

The dynamic evolution of the membrane potential of neurons (nodes) in the system is given by:

𝑽 (𝑡+Δ) = 𝑭 (𝑽 (𝑡)) (4)

Where 𝑭 =
[
𝐹𝑖

]𝑛
𝑖=1. In the non-refractory period of the neuron, the model evolves as follows:

𝐹𝑖(𝑉 (𝑡)) = 𝛾𝑉𝑖 (𝑡) (1 −𝜔𝑖 (𝑡)) +
∑
𝑗∈𝛼

𝑠𝑗𝑖𝜔𝑗 (𝑡− 𝜏𝑗𝑖), (5)

where 0 < 𝛾 ≤ 1 is the membrane voltage decay constant, 𝑉𝑖 (𝑡) is the membrane voltage of node 𝑖, 𝛼 is the set of signals that arrived 
at node 𝑖 at time 𝑡, 𝑠𝑗𝑖 is the synaptic weight between neuron 𝑗 and 𝑖, 𝜏𝑗𝑖 is the delay between neurons 𝑗 and 𝑖, and 𝜔𝑗

(
𝑡− 𝜏𝑗𝑖

)
indicates the activation of node 𝑗 at time 𝑡 − 𝜏𝑗𝑖. In words, at any given time 𝑡, either the current membrane potential, 𝑉𝑖(𝑡), decays 
until 𝑉𝑖 approaches 𝑉𝑚𝑖𝑛 or the current membrane potential is increased by the contribution of a new arriving signal multiplied by 
the synaptic weight. Finally, we note that the refractory period is not explicitly discussed in the above description; it is a period of 
3

time where the node is unresponsive to incoming signals and the membrane potential is held at 𝑉𝑚𝑖𝑛.
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5. Defining the steady-state statistics

The period of steady-state activity of the network dynamics is defined as the repeating or periodic set of network states that 
the dynamics settle to after some transient activity. Given our network construction, the regimes of network activity are persistent 
activity and neural death, i.e., cessation of all activity in the network. Although neural death is a type of steady state, it is the trivial 
case in this work. Persistent activity can either eventually enter a periodic orbit of network states or continue to exhibit non-periodic 
activity. In situations where it is difficult to determine a network’s steady-state behavior analytically, we forward calculate the 
network activity to computationally tractable limits and analyze the resulting dynamics to determine the network’s SS-S.

Given that the state of the network is 𝝎(𝑡), we say that the network is in a steady state if for ∀𝑡 ≥ 𝑡𝑠𝑠

𝝎(𝑡+ 𝑐) = 𝝎(𝑡+ 𝑐 + 𝑇 ) (6)

where 𝑡𝑠𝑠 is the steady-state starting point, 𝑇 is the steady-state period, and 𝑐 is some arbitrary positive time shift.

The transient regime of the network’s dynamics is the evolution of 𝝎(𝑡) until it enters the steady state regime. Therefore, 𝑡𝑠𝑠 also 
marks the end of the transient regime. Once the network activity has entered a periodic orbit, we define the period of steady-state 
activity as the interval of time/time-indices it takes for the activity to repeat. In networks with many nodes or with some of feedback 
mechanism that modifies the network parameters as a result of network activity, it is possible that the forward computation will not 
have been calculated for a long enough data window for the entire network to exhibit steady-state behavior. The methods presented 
in this paper can only determine the SS-S up-to the extent of the forward calculation, with the longest period equal to half the total 
simulation time interval.

6. Methods for finding network steady-state statistics

6.1. Summation method

We develop the summation method using the simulation data set :

 =
{
𝝎(𝑡0),𝝎(𝑡1),𝝎(𝑡2)…

}
. (7)

In words,  is a set composed of vectors [𝜔𝑖 (𝑡)]𝑛𝑖=1, where 𝑛 is the number of nodes in the network. For simplicity, one can imagine 
as a matrix whose rows represent nodes and columns represent time. The state of node 𝑖 is given by 𝜔𝑖(𝑡) eq. (3), where 𝜔𝑖(𝑡) ∈ {0, 1}. 
We assume the dynamics are sampled appropriately such that a node only activates once per time point at most. Each 𝜔𝑖(𝑡) is defined 
over the interval 𝑡 ∈ [𝑡0, 𝑡𝑓 ], where 𝑡0 is initial observation time and 𝑡𝑓 is the final observation time. The signal 𝜔𝑖(𝑡) is comprised of 
two parts: the transient part 𝑔𝑖(𝑡) which is defined over the interval 𝑡 ∈ [𝑡0, 𝑡𝑆𝑆𝑖

), and the periodic part ℎ𝑖(𝑡) which is defined over the 
interval [𝑡𝑆𝑆𝑖

, 𝑡𝑓 ]. The network’s activity can be described by the following set of equations:

𝜔1(𝑡) = 𝑔1(𝑡) + ℎ1(𝑡),

…

𝜔𝑖(𝑡) = 𝑔𝑖(𝑡) + ℎ𝑖(𝑡),

…

𝜔𝑛(𝑡) = 𝑔𝑛(𝑡) + ℎ𝑛(𝑡).

(8)

Since ℎ𝑖(𝑡) is periodic and given the form of 𝜔𝑖(𝑡) in eq. (8), we can describe it using a sequence of delta functions:

ℎ𝑖(𝑡) =
𝑟∑

𝑚=1
(𝛿(𝑡−𝑚𝑏1) +⋯+ 𝛿(𝑡−𝑚𝑏𝑞)). (9)

In eq. (9) there are a total of 𝑞 activations per period and 𝑟 total periods. Each element of the sum is the time of activation in some 
𝑚𝑡ℎ period, where 𝑚 is a multiple of the fundamental period. Note, during implementation, care must be taken for the final period in 
the data window because it is likely to be a fraction of a period.

To find the SS-S of the system, we start with the SS-S of each 𝜔𝑖(𝑡) (SS-S-i). SS-S-i is comprised of the steady-state start point and 
steady-state period. After all the steady-state start point are determined for each 𝜔𝑖(𝑡), the latest steady-state start point across all 
𝜔𝑖(𝑡) is used as the steady-state start point of the system. We define the steady-state period for the system as the longest period across 
all 𝜔𝑖(𝑡).

To determine the SS-S-i for the 𝑖𝑡ℎ node in the network we use 𝑧𝑖(𝑘, 𝑇 ):

𝑧𝑖(𝑘,𝑇 ) =

𝑘+𝑇

∫
𝑘

𝜔𝑖(𝑡)𝑑𝑡, (10)

where 𝑘 is the candidate steady-state start point of 𝜔𝑖 and 𝑇 is the candidate steady-state period of 𝜔𝑖. The longest period sets the 
upper-bound for 𝑇 , while the lower bound of 𝑇 is fixed to two consecutive time points. In the simulation time interval [𝑡0, 𝑡𝑓 ], we 
4

define 𝑡𝑖 ∈ [𝑡0, 𝑡𝑓 ] to be the time of steady-state start point of 𝜔𝑖(𝑡), which is the start of ℎ𝑖(𝑡).
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For all 𝑡 ≥ 𝑡𝑖, the signal 𝜔𝑖(𝑡) is in the steady-state regime. Let 𝜓𝑖 ∈ [0, 𝑡𝑓−𝑡02 ] be the length of the period of 𝜔𝑖(𝑡)’s steady state. We 
evaluate 𝑧𝑖(𝑘, 𝑇 ) over the candidate periods 𝑇 ∈ [0, 𝑡𝑓−𝑡02 ] and candidate starting points 𝑘. Our goal is to find the correct 𝜓𝑖 and 𝑡𝑖. 
The regimes of operation where we evaluate eq. (10) are

1) 𝑘 ∈ [𝑡0, 𝑡𝑖), 𝑇 ∈ [0, 𝑡𝑓−𝑡02 ]

2) 𝑘 ∈ [𝑡𝑖, 𝑡𝑓 ], 𝑇 ∈ [0, 𝑡𝑓−𝑡02 ]
a) 𝑘 ∈ [𝑡𝑖, 𝑡𝑓 ], 𝑇 ∈

{
𝜓𝑖,2𝜓𝑖,…𝑛𝜓𝑖

}
b) 𝑘 ∈ [𝑡𝑖, 𝑡𝑓 ], 𝑇 ∉

{
𝜓𝑖,2𝜓𝑖,…𝑛𝜓𝑖

}
We define some function 𝑓 (𝑥) to be uniformly zero starting at some constant 𝑐 when the function stabilizes at the value of zero 

after some point 𝑐, i.e.,

∀𝑥 ≥ 𝑐 , 𝑓 (𝑥) = 0 (11)

We will use the notion of uniformly zero to analyze the results of eq. (10).

To determine the SS-S-i, we find the smallest 𝑘 and smallest 𝑇 in 𝐴, where

𝐴 =
{
(𝑘,𝑇 ) ∣ ∀𝑘 > 𝑐,

𝜕𝑧𝑖(𝑘,𝑇 )
𝜕𝑘

= 0
}

. (12)

Note that A is a set of ordered pairs where each element is a candidate start time and candidate period.

To find the final (𝑘, 𝑇 ) for node 𝑖, first, we determine the steady-state start point of 𝜔𝑖(𝑡) (i.e., 𝑡𝑖) by finding the ordered pairs 
containing the minimum 𝑘 in the set 𝐴:

𝑡𝑖 =
{
𝑘 ∣ min

𝑘
𝐴

}
. (13)

We now consider a subset of 𝐴, where the first elements in the ordered pairs–the candidate start time–are the same, but the second 
elements–the candidate periods–are different due to the presence of harmonics of the fundamental period. The steady-state period of 
𝜔𝑖(𝑡) (i.e., 𝜓𝑖) is

𝜓𝑖 =
{
𝑇 ∣ min

𝑇
𝐴
||||𝑘=𝑡𝑖

}
. (14)

Once we determine the final 𝑡𝑖 and 𝜓𝑖 for each node, the maximum values across all nodes are selected for the SS-S of the system.

A limitation of using uniform sampling is its computational cost, which is a function of the sampling rate. To apply the summation 
method in the non-uniform sampling setting we define ̃:

̃ =
{
𝝎(𝑡)|∃𝜔𝑖(𝑡) = 1

}
. (15)

One can imagine ̃ as a matrix whose columns contain at least one node activation, that is, every column has at least one row with a 
value of 1. We use ̃ in Section 7.3 to find the SS-S in an asynchronous, event-based, non-uniformly sampled simulation framework. 
Generally, ̃ can be used in settings where the data is not guaranteed to be uniformly [52] or optimally sampled. For example, 
we may not be able to identify the optimal sampling rate a priori for networks whose dynamics are affected by evolving network 
parameters that affect the sampling rate. However, under the non-uniform sampling setting eq. (15), the summation method may not 
capture the true SS-S, and this is a limitation. Incorrect SS-S can result when there is a contraction or expansion of timescales during 
the time interval of node activations, or when the relative sequence of node activations does not change. But in some applications, 
approaches like the summation method are satisfactory, for example in biological neural systems where a global clock does not exist 
[53].

6.2. String search method

To apply the efficient string search method described later in Section 6.2.3, we must convert the dynamic evolution of the system 
(Section 4) into a string description. We use either  and ̃ as the input to the string search methods. To construct a string 
representation from a sequence of activations, we define a labeling function that maps activations to an alphabet of fixed length 
strings of size 𝑠. The alphabet is denoted as Σ𝑠.  ∶ 𝝎 →

{
Σ𝑠, 𝜖

}
, that is,  maps activations of neurons to fixed length strings Σ𝑠

and quiescent states to the empty string 𝜖, resulting in an alternate description of ̃ that was the non-uniform sampling description 
defined in eq. (15). We let 𝜎𝑠,𝜔𝑖

be the symbol associated with the activation of the 𝑖𝑡ℎ node. For brevity, we will drop the subscript 
𝑠 and assume a fixed length string in place of the symbol. Note that in the string we do not distinguish the time of activation; the 
string only contains information about the set of nodes which activated. We define  as the set of strings representing the evolution 
of the network. The ordering of this set is based upon the ordering of ̃. The input to the string run-finding algorithm is

{ }

5

 = 𝜎𝝎(0), 𝜎𝝎(1) … . (16)
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Fig. 1. Graphical representation of a set of ordered node activations that we will convert to a string of symbols. The activity of two nodes is presented. The y-axis 
represents the state of the nodes. 12a12a212 is a possible encoding of the signal.

To consider uniform sampling, the only change required is for  to assign a string to the quiescent states of 𝝎(𝑡) rather than 
mapping those states to 𝜖, thereby we construct an alternate to  (eq. (7)). Uniform sampling increases run time of the string search 
methods due to the increase in the number of time samples.

6.2.1. An example string transformation

In this section we present a simple technique to convert a given discrete signal 𝑥(𝑡) into a string. We begin by assuming that a 
system has 𝑛 nodes that can activate. We then enumerate each node arbitrarily and keep it fixed over the course of the analysis. 
We start with an empty string, and, since our system has information about which node activated, if node 𝑖 activated at time 𝑡 = 1, 
we simply append 𝑖 to the string. As such, we append each subsequent node activation to the string. In the case of multiple node 
activations at the same time, we generate a new enumeration and append it to the string. Consider a network with two nodes 
whose activation pattern is depicted in Fig. 1: Node 1 activates at 𝑡1, node 2 activates at 𝑡2, both activate at 𝑡3, and so on. Now 
we enumerate the event of the two nodes activating simultaneously with an arbitrary character (here “a”) and return the following 
output: 12a12a212. By doing so, we convert our signal into a string and reduce the problem from finding the steady state in a 
complex signal to finding a repeating substring. Note that when encountering events such as simultaneous activation, we use an 
unused character to represent it and store the mapping in a hash table.

6.2.2. Naive string search

In this section we present a naive string approach for periodicity detection, it is a prelude to the string run-finding algorithm 
discussed in Section 6.2.3. The input to the string search uses the construction from Section 6.2. Here we do a brute force search 
to identify a repeating, terminating substring in our signal-converted string. To do so, we loop over the period of the expected 
steady-state pattern, and for each period, we loop over the start time, essentially testing all 𝑛(𝑛 + 1)∕2 substrings as the candidate 
steady-state pattern. Formally, given a string of length 𝑛, we find the pattern using Algorithm 6.2.2. The search terminates when the 
algorithm finds the shortest substring that repeats until the terminus of the input string. The outputs of the procedure are the SS-S. 
A basic analysis of the pseudo-code yields an 𝑂(𝑛3) time complexity, which is improved upon in the next section.

6.2.3. Efficient string search

The efficient algorithm uses the input  (eq. (16)). We let 𝜎 [𝑡] denote the 𝑡𝑡ℎ location in  . In stringology [37,54,55], a string 
of length 𝑛 has period 𝑝 if 𝜎 [𝑡] = 𝜎 [𝑡+ 𝑝] for any 𝑡, such that 1 ≤ 𝑡 ≤ 𝑛 − 𝑝. If we were to consider the case where a string can be 
decomposed into sub-strings 𝑢, 𝑣, and 𝑤, such that 𝑢𝑣𝑘𝑤, then string 𝑢 is considered the prefix of input string, string 𝑣 is the period 
repeated 𝑘 times, and the string 𝑤 is considered the suffix of the input string.

Due to our interest in finding the starting time and period of the steady state, we are concerned with strings that end with 
repetition. More specifically, strings that end at some location in the period 𝑣 during the course of a run [39]. In stringology, a 
primitive string is a string that is the fundamental period of the repetition (and can not be further compressed into the form 𝑣𝑘). The 
leftmost primitive string is called maximal, that is, if the primitive string can not be shifted anymore to the left. If the primitive string 
could be shifted further left, a new prefix and an addition to the 𝑘𝑡ℎ repetition would result, and that point would be the leftmost 
maximal. A run is defined as the maximal, fractional, and primitively-rooted repetition (example: 12312312312 = (123)3

2
3 , where the 

run is 123). Fractional runs take into account the stop of the forward calculation at some fraction of the period. Now we have the 
stringology terminology to describe our needs. We are interested in strings which end in runs, i.e., periodic sequences. Moreover, we 
are interested in the leftmost primitively-rooted repetition of that last run because that is the starting point of steady state.

The problem of finding runs in strings has been solved using O(n) time algorithms [43], where 𝑛 is the length of the string. 
Modern run-finding algorithms [41,46,56,57] rely on building and analyzing complex data structures that are amenable to finding 
repetitions in strings. Algorithms which detect runs follow a general procedure. First, a suffix array is built [58,59]. Then, the Longest 
Common Prefix [60] is calculated. Next, the leftmost runs are found using Lempel-Ziv Factorization [61,62]. Finally, all maximal 
6

repetitions are found using Kolpakov and Kucherov’s [43] linear time algorithm.
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Algorithm 1 Naive Find Steady-State Statistics.

Input signal

Output repeating-signal, steady state: start & period

1: procedure FINDSTEADYSTATE

2: str ← signal

3: strlen ← length of signal

4: perlen ← length of candidate period length

5: index ← length of current position in string

6: for perlen = 1 to strlen do:

7: for index = 0 to strlen-1 do:

8: substring = str[index:index+perlen]
9: if CheckTerm(substr, str, index, perlen) then

10: repeating-signal ← substring

11: start-steady-state ← index

12: period ← perlen

13: return repeating-signal, start-steady-state, period

14: procedure CHECKTERM

15: str ← signal

16: substring ← candidate steady state

17: index ← candidate start point

18: perlen ← length of candidate period length

19: while i = index to strlen-perlen do:

20: if substring != str[i:i+perlen] then

21: return False

22: return True

Fig. 2. An illustration of the summation method. (a) An idealized 1𝐻𝑧 signal, sampled at 100𝐻𝑧, comprised of Dirac impulses. The duration of the signal is 4𝑠. (b) 
The sum of pulses over the candidate starting points and candidate periods, 𝑧𝑖(𝑘, 𝑇 ), eq. (10). The values of the heat map are defined over the set of possible starting 
points and periods, whereas, the white-space corresponds to the starting points and periods that can not be determined given the data. For example, we can not 
determine periods longer than half the data because we do not observe a repetition. (c) A plot of the difference of the sum of spikes with respect to starting position, 
𝜕𝑧𝑖

𝜕𝑘
(the condition of eq. (12). The two leftmost horizontal red lines refer to the period and the harmonics of the original signal. The red horizontal lines indicate 

when the difference is zero from its leftmost end, the start time, to the end of the data. At the leftmost position of the red line is the start time of steady state. The 
heat map indicates the values of the differences. (d) A Poisson distributed sequence of Dirac impulses sampled at 100𝐻𝑧. (e) Its sum of spikes, eq. (10). Note that the 
symmetries present in panel (b) are absent. (f) A plot of the difference of the sum of spikes with respect to starting position, 𝜕𝑧𝑖

𝜕𝑘
(the condition of eq. (12). As indicated 

by the lack of long contiguous red horizontal lines, there is no dominant start time and harmonic.

Once the maximal runs have been found, we store the runs that end at the input string’s final character position, and we output 
the run which has the minimum starting position. The primitively-rooted repetition is the period of steady-state activity. We detected 
7

runs using runFinder, which is an implementation courtesy of Dr. Hideo Bannai of Tokyo Medical and Dental University in Japan.
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6.3. Methodological limitations

Both the summation and string search periodicity detection methods have limitations. For example, we only considered the binary 
node states, but other network observables may be more appropriate indicators of steady state, such as the ordered list of node 
activators (that is upstream nodes whose signals cause a target node to activate). While the string search method can accommodate 
an activators list, the summation method can not without post-processing.

The summation method uses the latest start time and the longest period across all nodes; therefore, we are assured that the 
system is in a steady state. But while the system is in a steady state, the outputted period of the steady state may include non-integer 
multiples of the periods of node activity. That is, nodes with shorter periods would terminate midway through their 𝑛𝑡ℎ period, here 
𝑛 is a real number greater than or equal to 1, at the time point when the node with the longest period ends. If the requirement is to 
capture integer multiples of the periods of all nodes dynamics, then the greatest common divisor of all their periods is required. The 
resulting value may exceed the feasible observation time of the network’s dynamics.

Non-uniform sampling causes a few issues with both the summation and string search methods. Situations can arise where there 
is a contraction or a dilution of time-scales, but the order of network activity is unchanged. This can only be detected when the 
system is observed through uniform sampling. Any drift in network activity without causing a reordering in ̃ (eq. (15)) will be 
treated the same by both the summation and string search methods.

Another non-uniform sampling issue that afflicts the summation method is presence of an incorrect initial set of activations in the 
first period. This issue does not occur in the uniform sampling setting. A node activation that is not actually part of the steady-state set 
of node activations may erroneously be included. This happens when the number of time indices between the erroneously included 
activation and the actual steady-state starting point is less than the number of time indices between the spacing of any of the node 
activations of the actual steady-state period. Outside the first period, this issue will not arise because of the strict requirement that the 
number of spikes in the smallest period from the start to finish be maintained between all consecutive starting points. This issue can 
be corrected by post-processing the periodic network activity by comparing the contents of the detected periods. When an erroneous 
spike is detected, one solution is to remove the erroneous spike from consideration by flipping the corresponding bit, rerunning the 
algorithm, and rechecking for alignment.

7. Applications

7.1. Summation method: 1 Hz signal

We illustrate the summation method using as input the waveform in Fig. 2a, which is an ideal 1𝐻𝑧 impulse train sampled at 
100𝐻𝑧. The signal consists of a sequence of zeros and ones. In Fig. 2b, we evaluate 𝑧𝑖(𝑘, 𝑇 ), eq. (10). In Fig. 2c, we show 𝜕𝑧𝑖

𝜕𝑘
= 0

a condition in eq. (12). The red horizontal lines in Fig. 2c indicate the candidate periods and starting points which correspond to 
eq. (12).

The candidate periods fall into two categories. Category 1 encompasses the two red horizontal lines which share a start time of 0
seconds, and category 2 encompasses all the other red horizontal lines which start at start time 1 second, 2 seconds, and 3 seconds. 
For the signal’s SS-S, we choose the earliest start time per eq. (13) and the shortest period per eq. (14). The period of 1 second 
explains the data from a start time of 0 seconds onward. The other red horizontal lines are a result of the envelopes for some range 
of (𝑘, 𝑇 ) in eq. (10) as noted in Section 6.1, meeting the condition of eq. (11) but explaining less of the data.

7.2. Summation method: randomized impulse train

Here we input a Poisson distributed sequence of impulses as shown in Fig. 2d to the summation method. As a result of applying 
eq. (10), we observe in Fig. 2f that there are bands of values of start times and period lengths which have the same number of spikes. 
However, the bands of start time are not horizontally contiguous, which is our requirement for the SS-S. One way in which we can 
handle noise is by relaxing the criteria for the change in the number of spikes in adjacent starting points.

Given the stochastic nature of input signal, we observe that Fig. 2i no longer exhibits the kind symmetry found in Fig. 2c. 
Therefore, the uniformly zero condition eq. (11) is only satisfied in eq. (12) for 𝑘 at the terminus of the data window. In other words, 
all the zero differences (time points meeting the uniformly zero condition) are relegated to a few starting points at the end of the 
data-window, and there are no periods of non-negligible size, or easily discerned harmonics thereof. In such cases, when the system’s 
dynamics has not entered the regime of periodic activity, we may still end up with candidate periods and starting points due to an 
unchanging number of spikes in the last few starting points, 𝑘, where the uniformly zero criteria is met. Therefore, one must make 
sure that the forward calculations are done for long enough to ensure that the system is actually in steady state. A simple empirical 
workaround is to ensure that the steady-state starting point occurs for at least some fraction of the forward-calculated data-window’s 
length.

7.3. Summation method: non-uniformly sampled network dynamics

Here, we apply the summation method to detect the SS-S of the dynamics on a biological spiking neural network as described in 
Sections 3 and 4. The network under consideration is illustrated in Fig. 3a. The complexity of the dynamics in this network arises 
8

from the interplay of edge delays and node refractory periods. We introduce an image of a hand written digit from the MNIST 
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Fig. 3. (a) A sample network diagram. The Input layer consists of 784 nodes. The Recurrent/Hidden layer contains 5 nodes. The Output layer contains 4 nodes. The 
values of the Input layer are set based upon the MNIST images. If the pixel contains a non-zero value, then the corresponding input node is activated and is part of the 
initial condition of the network. The network’s connectivity is as follows: Feed-forward connections from the Input layer to the Hidden layer, recurrent connections 
within the Hidden layer, and feed-forward connections from the Hidden layer to the Output layer. A sample of the edge delays are shown. We used a node refractory 
period of 1∕24𝑠, a node activation threshold of Θ = 2, a membrane decay constant of 𝛾 = 𝑒−2Δ𝑡 , where Δ𝑡 is the current time minus the signal arrival time. We set the 
synaptic weights and the outgoing signal amplitudes to unity. (b) The resulting network activity of the nodes in the Output layer resulting from activity of the Input 
layer. The network activity is shown as a raster plot, eq. (3) We forward calculate the network dynamics using eq. (5) to 50𝑠. We chose this length of simulation time 
for two reasons. First, the length was long enough to make sure that most initial conditions lead to steady-state activity for our purposes. Second, that we are able to 
observe multiple periods of steady-state activity to make visualization of the SS-S easier.

database [63] as binary vector at time 𝑡 = 0 to the input layer nodes of the network and analyze the resulting dynamics, eq. (5). In 
order to get a sense of the data we wish to analyze, we created a raster plot of the output nodes’ activity (Fig. 3b).

We construct the input to the summation method using ̃ (eq. (15)); this puts us in the non-uniform sampling setting. We show 
the start time index and the size of the periods in units of time indices in Figs. 4a, 4b. Note that each iteration through the method is 
done on a per node basis, and the SS-S of the system is based on the latest start time and the longest period among all the analyzed 
nodes.

As with the previous examples, the smallest value on the abscissa, where the red horizontal line begins, is the start of the 
steady-state behavior. Each successive red line (from the set of red lines with the same minimum start time) on the ordinate represents 
the harmonics of the fundamental period of steady-state activity.

In Fig. 4 we switched from using seconds to using time indices. While the start time index corresponds to a specific absolute 
time value (seconds) in the non-uniform setting, the number of time indices which make up a period corresponds to a range of 
absolute time values. Fig. 5a illustrates the variation in the absolute time for a fixed period as a function of the start time index. By 
evaluating eq. (10) for a fixed period, in units of time indices, and across start time indices, we observe the fluctuations in period 
length measured in absolute time between start times. This is due to non-uniform sampling. The absolute time between adjacent 
9

activations varies; therefore, moving one time index does not correspond to a move of one absolute time unit.
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Fig. 4. (a) The sum of spikes, eq. (10), over candidate periods and starting indices for output node 1. Given our approach to the summation method in the non-uniform 
sampling setting, it no longer necessary to discuss units in terms of absolute time (seconds). In the non-uniform sampling setting, the candidate periods and starting 
points are selected and swept along the sampling points determined by the system’s node activations. For example, a period of length 𝑦 index units may refer to a 
range of absolute times. As such, the candidate SS-S are determined based on indices rather than an absolute time measure. The system’s SS-S is determined from 
analysis of all nodes in the network and from selecting the latest starting point and longest period amongst all nodes. As the size of the period increases, more node 
activations are captured, resulting in higher values for the evaluated sums. (b) The first finite difference in index units, 𝜕𝑧𝑖

𝜕𝑘
(the condition of eq. (12). The result of 

the difference is given by values of the heat map. The red horizontal lines denote where the uniformly zero condition is met. The starting point of steady state is 
the minimum of the start indices of the red horizontal lines. The fundamental period of network activity is given by the lowest valued red horizontal line with the 
minimum starting index. Each harmonic of the fundamental period is given by the incrementally higher horizontal red lines with the same starting indices. The red 
horizontal lines at the end of the data range of starting points correspond to consecutive candidate periods with the same number of spikes. In this situation, the 
candidates are easily filtered using the minimum starting point criteria. Light blue values correspond to adjacent starting points whose difference in the number of 
spikes is 0.

Each horizontal line in Fig. 5a corresponds to a harmonic of the period. The fluctuations in a particular horizontal line in Fig. 5a 
correspond to the aforementioned absolute time between the start of the period and end of the period. Fig. 5b shows the number of 
spikes which are present in each harmonic of the period. There is a one-to-one correspondence between Figs. 5a and 5b in terms of 
bottom to top ordering of curves. As expected, and required by eq. (6), once the system is in steady state, the number of spikes in a 
period stabilizes to the steady-state number of spikes in a period. The number of spikes in a period is unchanging over a period for 
𝑡 ≥ 𝑡𝑆𝑆 . Each vertically successive horizontal curve in Fig. 5b shows the number of spikes in each of the corresponding harmonics of 
the period.

7.4. String search method: non-uniformly sampled network dynamics

We apply the efficient string search method described in Section 6.2.3 to detect the SS-S of the network dynamics considered in 
Section 7.3. We use eq. (16) to construct the input to the run-finding algorithm. Since the network has a total of 793 nodes (784 
10

Input layer nodes associated with the pixels in each image, 5 Hidden layer nodes, and 4 Output layer nodes), each node is associated 
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Fig. 5. We show the effects of the summation method on non-uniformly sampled network dynamics (following from Fig. 4) as it pertains to both time indices of 
the detected period and the number of spikes in the detected period, as well as how the two relate to absolute time. In (a), the abscissa shows the candidate start 
indices and the ordinate shows the length of the period in time units of seconds. Each horizontal line in the plot corresponds to a previously determined harmonic–the 
horizontal red lines from Fig. 4b. The bottom-most horizontal line corresponds to the fundamental period, and each subsequent one corresponds to the harmonics of 
the fundamental period. Fluctuations of each horizontal line correspond to the length of the period in seconds when counting the fixed number of time indices from 
the start index to the end index of a given period. Because of non-uniform sampling, the fluctuations remain. This is in contrast to (b), where the sum of spikes in 
each period during steady state is constant. In (b), we count the number of spikes in each period as a function of the start index (eq. (10)), and we can clearly see that 
after the inception of steady-state dynamics, the number of spikes stabilizes to the steady-state value, that is, a constant value for the sum of the spikes. The ordinate 
is a count of the number of spikes. The abscissa is the start index. And each horizontal line corresponds to a harmonic, the bottom-most one corresponding to the 
fundamental period and each subsequent one a harmonic.

with a string of 3 symbols. Node 1 will have a label 001, node 2 will have label 002, and so on up to node 793 with label 793. We 
do not delimit the symbols with commas or other delimiters as those symbols increase the processing time.

Table 1 shows a sample output for illustration. For a string of length 8586 symbols, which translates to 2862 node activations, the 
run-finding algorithm finds a string of length 81 symbols, which is 27 node activations in a steady-state period and a run of length 
6090 symbols, which translates to 2030 steady-state node activations. We use the precise SS-S to construct a graph of activations 
based on the set of causal relationships between node activations up to the point where the network dynamics stop producing new 
information; this occurs after the system enters steady state.

7.5. Constructing spatial-temporal graph representation of network dynamics

Using the causal node activity and knowledge of the network dynamics’ SS-S, we construct a finite graph representing the 
dynamics of the network. The nodes of the graph refer to (𝑣𝑖, 𝑡𝑘), where 𝑣𝑖 is the neuron which activates at some time 𝑡𝑘. The edges 
of the graph represent the causal activators [21] of (𝑣𝑖, 𝑡𝑘). Every time a neuron is activated, a new node, (𝑣𝑖+1, 𝑡𝑘+1), is added to 
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the graph. As such, the child nodes are the subsequent nodes that are causally activated. A set of root nodes represents the initial 
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Table 1

Sample outputs for the SS-S of the system using the efficient string search method. Each of the entries is in either string character units or refers to specific node 
numbers in a sequence. String character units refer to the index (rows 1 and 2) or interval (row 3) of a symbol or symbols in a string sequence. When mapping from 
String Character Units to network node activations, care must be taken to account for the length of the node’s symbolic description. For example, because we are 
using a network with 793 total nodes and using the decimal counting system, we use three symbols to describe every node, and each of the values in string character 
units is divisible by three. Row 4 shows a sequence of node numbers which represents the sequence of node activations in one period in the steady-state regime. 
We inserted commas in row 4 only to make the nodes involved in the sample period more readable; inserting extraneous symbols into the string finding algorithm 
increases the run time and may not have enough benefit.

Sample Start Index (String Character Units) 2496

Sample Stop Index (String Character Units) 8586

Sample Period Length (String Character Units) 81

Sample Period (Node Numbers) 786, 788, 789, 785, 793, 791, 792, 790, 787, 786, 789, 788, 793, 785, 791, 792, 790, 787, 786, 789, 788, 785, 
793, 791, 792, 790, 787

conditions and external perturbations to the network. By construction, we are able to distinguish repeated node activations, while 
still being able to construct subgraphs of neuron-neuron interactions.

Given this network representation of the dynamics, we are able to use network tools to do comparisons. Without the SS-S, it is 
difficult to determine the which portions of the network dynamics are relevant. Moreover, for situations where network dynamics do 
not taper off into quiescence, the SS-S provides a bound on the construction of the spatial-temporal graph. Finally, to do a comparison 
of representations from different sets of network dynamics, knowledge of the dynamical regime (i.e., the transient or the steady-state 
portions) is important.

8. Conclusion and future work

In this paper we propose methods to analyze network dynamics and show applications of those methods. Without these methods, 
at one extreme in a sense, analysis of a network’s dynamics is based on an unknown portion of its transient activity because there is 
no way to know whether the dynamics have entered the steady-state regime. This results in the omission of information produced by 
the dynamic evolution of the model. At the other extreme, analysis of a network’s dynamics is based on data that over-represents the 
steady-state regime because of the lack of precise knowledge about when the steady-state regime began and the number of periods 
present in the data. This results in a waste of computational resources and an imbalance when making quantitative comparisons 
of different sets of dynamics. At worst, the analysis of a network’s dynamics is made without any knowledge at all of the dynamic 
regimes being analyzing. The determination of whether a system is in the steady-state or transient regime implicates different 
mathematical tools and considerations which come to bare during the analysis of the system’s response.

This paper makes three important contributions toward the identification and analysis of normalized comparisons of network 
dynamics. First, we developed methods to calculate the precise SS-S of network dynamics using efficient algorithms, with each SS-S 
finding method providing different advantages. The summation method can be extended to a noisy setting by relaxing the uniformly 
zero criteria while maintaining the computational complexity. And the string search method utilizes a more efficient but less flexible 
algorithm because its computational complexity increases when considering noise. In addition, it can only handle limited noise types 
(insertion and deletion).

Second, we successfully applied our methods to idealized signals and the dynamics of biological spiking neural networks. Our 
methods detected the SS-S of a spiking neural network with complex dynamics resulting from the interplay between edge signaling 
delays, node refractory periods, and synaptic weights. Further comparison between network topologies and steady-state start time is 
left to future works.

Third, we showed how to transform network dynamics into finite spatial-temporal graph representations using the SS-S to bound 
the construction. The graph representation we constructed reflects one of several representations to describe the dynamics [17,18,22].

While the methods in this paper have application to a number of systems, we suspect that larger and/or more complex 
networks–including networks with variations in parameters over long time scales–still pose practical challenges to finding the SS-S. 
For example, in some models of biological spiking neural networks forward calculation of the network dynamics until stead state is 
reached may be computationally infeasible because the inception of the steady state regime has an exponential dependence on the 
network’s size [27,50]. This limitation can be partly mitigated if one is only interested in transient stability, which in this context we 
define as the periodic network dynamics over some time interval and of some subset of the entire network. Our proposed methods 
for finding the SS-S can easily be extended to detect transient stability by defining observational sets of interest.

A potentially fruitful future direction for this work is to automate the stopping criteria for forward computation of complex 
networks. If steady state detection could be performed in parallel with forward computation, periodicity could be used to stop the 
forward computation of network dynamics. This might be accomplished with an online, efficient algorithm for string repetition 
detection, that is, one that does not require recomputing large data structures to incorporate newly appended symbols to the string 
[64].

Another extension of the string search algorithm is to incorporate additional observed network states and parameters. These 
could be, for example, causal node activators, weighted synaptic signal contributions, times between activations, etc. This can be 
done by extending the library of symbols included in the string and paying a relatively small computational penalty for increasing 
12

the complexity to 𝑂(𝑘𝑛), where 𝑘 is the symbol length. For example, in the case of adding causal node activators, let us assume there 
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are, on average, three activators required per activation. If so, we would extend the size of the string by a multiple of four. Any 
parameter that can be translated into a symbolic representation can be included in the string representation for analysis. It is up to 
the user to determine the appropriate trade-offs between the parameters for inclusion and the computational costs associated with a 
longer string.

Although the graph representation of the network activity is agnostic to the steady state finding process, the number of 
observations that need to be included to build a finite and compact graph needs to be determined before the method can be applied. 
By bounding the network dynamics, various network models and parameters can be evaluated. Using the techniques developed in 
this work, we can quantitatively differentiate between network activity regimes and represent network dynamics in a normalized 
manner.
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