
Heliyon 9 (2023) e13913

Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

Research article

Identifying steady state in the network dynamics of spiking neural

networks

Vivek Kurien George a,b, Arkin Gupta c,b, Gabriel A. Silva d,b,∗

a Department of Bioengineering, University of California San Diego, La Jolla, CA, 92037, United States of America
b Center for Natural and Engineered Intelligence, University of California San Diego, United States of America
c Department of Computer and Electrical Engineering, University of California San Diego, United States of America
d Departments of Bioengineering and Neurosciences, University of California San Diego, United States of America

A R T I C L E I N F O A B S T R A C T

Keywords:

Complex networks

Network dynamics

Network evolution

Periodicity detection

Spiking neural networks

Representation of network dynamics

Symbolic dynamics

Analysis of the dynamics of complex networks can provide valuable information. For example,
the dynamics can be used to characterize and differentiate between different network inputs
and configurations. However, without quantitatively delineating the network’s dynamic regimes,
analysis of the network’s dynamics is based on heuristics and qualitative signatures of transient
or steady-state regimes. This is not ideal because interesting phenomena can occur during the
transient regime, steady-state regime, or at the transition between the two dynamic regimes.
Moreover, for simulated and observed systems, precise knowledge of the network’s dynamical
regime is imperative when considering metrics on minimal mathematical descriptions of the
dynamics, otherwise either too much or too little data is analyzed. Here, we develop quantitative
methods to ascertain the starting point and period of steady-state network activity. Using the
precise knowledge of the network’s dynamic regimes, we build minimal representations of the
network dynamics that form the basis for future work. We show applications of our techniques
on idealized signals and on the dynamics of a biologically inspired spiking neural network.

1. Introduction

Modeling physical and information systems as networks is a powerful approach, especially for systems such as biological neural
networks with multiple elements interacting in non-trivial and complex ways. Network abstractions are used pervasively in science
and engineering [1–6], and both the structure and dynamics of complex networks are well studied [2,7–9]. Some examples of
dynamic processes on networks are oscillator synchronization, diffusion processes, rumour spreading, and epidemic propagation
[10–14].

While there are many methods to compare network structures–for example, graph edit distance, distances based on node
degree distributions, comparing the spectral properties of the graph Laplacian–there are comparatively fewer methods capable
of mathematically describing network dynamics in a way that allows for normalized quantitative comparison of structurally and
dynamically heterogeneous networks [15–19]. In other words, it has proven difficult to compare two structurally similar networks
that dynamically evolve in their own respective ways, and it remains an open problem. The challenge is that the structural
connectivity of the network cannot fully account for the temporal evolution of the network dynamics [20]. One representation

* Corresponding author at: Departments of Bioengineering and Neurosciences, University of California San Diego, United States of America.
Available online 1 March 2023
2405-8440/© 2023 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

E-mail addresses: vivek.kurien.george@gmail.com (V.K. George), arkin.gupta@gmail.com (A. Gupta), gsilva@health.ucsd.edu (G.A. Silva).

https://doi.org/10.1016/j.heliyon.2023.e13913

Received 21 August 2022; Received in revised form 15 December 2022; Accepted 15 February 2023

http://www.ScienceDirect.com/
http://www.cell.com/heliyon
mailto:vivek.kurien.george@gmail.com
mailto:arkin.gupta@gmail.com
mailto:gsilva@health.ucsd.edu
https://doi.org/10.1016/j.heliyon.2023.e13913
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2023.e13913&domain=pdf
https://doi.org/10.1016/j.heliyon.2023.e13913
http://creativecommons.org/licenses/by-nc-nd/4.0/

Heliyon 9 (2023) e13913V.K. George, A. Gupta and G.A. Silva

of the evolving dynamical topology of a network consists of the vertices and edges derived from causal signaling paths [18], and it is
a subset of the network’s structural connectivity. In most cases, a necessary early step in comparing dynamic topologies is to create a
mathematical abstraction–in our case, a graph–in a defined space that allows for the computation of different metrics. However, this
is difficult to achieve because the dynamics of the networks evolve toward some steady-state configuration over different periods
of time and in different ways. Knowledge of the steady-state starting point and periods is necessary to ensure that the appropriate
dynamic regimes of network activity are present during comparison.

In this work, we address this problem by solving a number of technical issues that impede normalized quantitative comparisons
of network dynamics. First, we propose methods to find the precise transient and steady-state regimes of network dynamics using an
efficient algorithm in a novel way. We then use information about the dynamic regimes of network activity to construct mathematical
abstractions from which we can systematically extract the paths and patterns of the dynamics of structurally heterogeneous networks.

To start we construct a mathematical description of the network dynamics. Next, we propose methods to find the Steady-State
Statistics (SS-S) of the network’s dynamics. For the network dynamics we chose to use dynamical rules developed by Silva in [21]

which describes in generality the signaling dynamics of biological spiking neural networks (Section 3 contains the details). The
SS-S consists of a steady-state starting point and the steady-state period. The steady-state starting point is the time point when the
network’s dynamics enter a periodic orbit, that is, start to repeat, and the steady-state period is the time interval, or the number of
time steps in one period of steady-state activity. To determine the SS-S, we propose a signal summation based algorithm of complexity
𝑂(𝑛3) and a string repetition search based algorithm of complexity 𝑂(𝑛), where 𝑛 is the number of time samples under consideration.
Finally, upon determining what part of the system’s dynamical regime to capture, we construct a network representation of the
dynamic topology. In this article we focus our techniques on the analysis of neural dynamics [22] and creating representations for
machine learning [19].

The rest paper is organized as follows. In Section 2, we discuss related work. In Section 3, we describe the construction of our
complex network model (a biologically inspired spiking neural network). Following that, in Section 4, we show how to transform
the network dynamics into a symbolic description. Then in Section 5 we formally define the components of the SS-S. In Section 6,
we introduce methods to find the SS-S of network dynamics. In Section 7, we show some applications of our methods: we apply
the summation method to an idealized signal (Section 7.1), a random signal (Section 7.2), and to the dynamics of a small spiking
neural network (Section 7.4). Then, we use the string search method the derive the SS-S of the small spiking neural network
(Section 7.4). Using the SS-S, we show how to construct a spatial-temporal network representation of the dynamics (Section 7.5).
This representation is a starting point for further study. To conclude, we put this work in a broader context and discuss some future
directions.

2. Related work

In neuroscience there are many mathematical descriptions of neural network dynamics, each of which lend themselves to different
insights. Some of the most commonly used descriptions are dynamical systems descriptions [23], network science descriptions [24,

25], topological descriptions [26], and symbolic descriptions [27]. Generally, underlying each of these descriptions is the membrane
voltage dynamics of individual neurons or voltage readings from neural regions. The activity of neurons is commonly summarized by
a so called “raster plot.” It consists of a set of sequences of node activations, each sequence corresponding to the membrane dynamics
of a particular neuron. In [27], Cessac rigorously showed that there is one-to-one correspondence between the membrane dynamics
and raster plot.

To build compact mathematical descriptions of the neuronal dynamics such as in [17,18,22–24], one must detect when the
network of spiking neurons enters a periodic, steady-state domain of activity. In the earliest work we found [28], the authors sought
to detect periodicity and study the steady-state dynamics in computational models of biological neural networks with the aim of
understanding the circumstances under which neural networks could maintain ongoing activity. They estimated periodicity through
visual observation of aggregate network activity. In some simplified models of biological neural networks, it is possible to determine
fixed-points and periodic attractors analytically [16], but for more complex neural models, it is generally not, which thereby requires
the use of numerical methods to approximate solutions [29,30].

In computational modeling settings where it is difficult to accurately determine the SS-S analytically [31,32], even without the
presence of noise and where the dimensions as well as the number of data points are large, we must use efficient algorithms. While
the data mining community has developed a vast array of periodicity detection methods for time series databases [33–35], and their
techniques can be used in a wide variety of applications where observations and data generation processes are both noisy, their
methods assume that the collected data is in the periodic regime. In our case modeling a biological spiking neural networks–and in
most modeling cases–periodicity can not be assumed because there are transient and steady-state regimes of the network dynamics.
Because the existence of a transient regime violates the underlying periodicity assumption for the data input to the methods, and
because we are interested in explicitly delineating the transient and steady-state regimes of network activity for further analysis, we
can not use data mining periodicity detection techniques. Instead, we use linear time algorithms from the string analysis community
to find the precise SS-S of the network dynamics.

To detect the SS-S of network dynamics, we recast the network dynamics into a form which can be analyzed by string processing
algorithms [36,37], more specifically, string run-finding algorithms. A string is a linear sequence of symbols drawn from some
alphabet, and it is a common form of data storage [38]. The earliest of these algorithms was developed by Main [39], and many other
algorithms were developed to improve computation time and space complexity [40–42]. Kolpakov and Kucherov [43,44] conjectured
2

O(n) complexity run-finding algorithms, and Bannai etal. [45] proved the conjecture. Thorough benchmarking of commonly used

Heliyon 9 (2023) e13913V.K. George, A. Gupta and G.A. Silva

string run-finding algorithms was done in [46]. We take advantage of the linear time algorithms [45] developed by the string analysis
community to determine the SS-S of the dynamics resulting from a biological spiking neural network model.

3. Network description

A biological spiking neural network is a type of complex network, that is, a dynamical system composed of interacting elements.
We model the topology of such a network as a directed graph [47]. We define a directed graph 𝐺 as the tuple 𝐺 = (𝑉 , 𝐸), where the
set of nodes 𝑉 =

{
𝑣1, 𝑣2,… , 𝑣𝑛

}
, 𝑛 is the number of nodes in the network, 𝐸 is a set of directed edges 𝐸 ⊂ 𝑉 × 𝑉 . Nodes in the graph

represent neurons, and edges represent axons.

The dynamics of each node in the network follows that of a so called geometric dynamic perceptron [21]. Full details and
mathematical proofs for the node and network dynamics can be found in [21]. Briefly, this model captures the competing interactions
of signals from upstream nodes incident on a target downstream node, along directed edges. The model takes into account how
temporal latencies produce offsets in the timing of the summation of incoming discrete events due to the physical geometry of the
edges as well as the network’s structural connectivity. The dynamics that result from the weighted summation process are then
responsible for the activation of the target node. At the core of this model is the interplay between the incoming signals and the
target node’s refractory period–an unresponsive period which can be construed as the time for internal processing at the individual
node level. Built on this theoretical and conceptual framework, the geometric dynamic perceptron model is an extension of the
classical perceptron model [48] and a generalization of the integrate-and-fire neuron model [49].

In our model, the 𝑖𝑡ℎ neuron takes on a binary state 𝜔𝑖 (𝑡) = {0,1} at time 𝑡. A neuron’s state is determined by its underlying
membrane potential. An axon/directed edge from neuron 𝑗 to neuron 𝑖 is given by 𝑒𝑗𝑖 =

(
𝑣𝑗 , 𝑣𝑖

)
, where 𝑒𝑗𝑖 ∈𝐸. Due to the geometric

embedding of the complex network, every edge in 𝐺 has an associated delay, 𝜏𝑗𝑖, which is the time it takes a signal originating at
neuron 𝑗 to reach neuron 𝑖. In general, 𝜏𝑗𝑖 can be a function of several variables, but in this work, the delays were initialized using a
uniform distribution then kept constant.

4. Symbolic description of network dynamics

Here we construct a mathematical bridge from a dynamical system description to a symbolic coding description following the
work of Cessac etal. [50,51]. We let 𝑉𝑖(𝑡) be the membrane potential of neuron 𝑖 ∈ 1…𝑛 at time 𝑡. Then we construct a vector
representation of all the node membrane potentials 𝑽 (𝑡) =

[
𝑉𝑖 (𝑡)

]𝑛
𝑖=1 at a given time 𝑡. The dynamics begin at 𝑽 (0) which is the initial

condition of the system. The range of values of each node’s membrane potential is in the closed interval
[
𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥

]
. A node activates

when its membrane potential reaches or exceeds the threshold for activation Θ ∈
[
𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥

]
. For a trajectory 𝑽 , the activation times

of neuron 𝑖 are given by:

𝑡
(𝑚)
𝑖

(𝑽) =𝑚𝑖𝑛

{
𝑡|𝑡 > 𝑡

(𝑚−1)
𝑖

(𝑽) , 𝑉𝑖 (𝑡) ≥Θ
}
. (1)

In other words, 𝑡(𝑚)
𝑖

is the time of the 𝑚𝑡ℎ activation of neuron 𝑖, which we denote as the minimum of the set of activations after the
(𝑚 − 1)𝑡ℎ activation when the membrane voltage reaches the threshold from below. As an initial condition for the set of activation
times, we set 𝑡(0)

𝑖
= −∞. After activation, the neuron’s membrane potential resets to some value 𝑉𝑟𝑒𝑠𝑒𝑡 ∈

[
𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥

]
:

𝑉𝑖 (𝑡) ≥Θ ⟹ lim
Δ→0+

𝑉𝑖 (𝑡+Δ) = 𝑉𝑟𝑒𝑠𝑒𝑡. (2)

Next, we generate a symbolic coding description of the system’s dynamics by formalizing the notion of a spike raster plot. A
raster plot is a sequence {𝝎 (𝑡)}+∞

𝑡=0 of vectors 𝝎 (𝑡), where 𝝎 (𝑡) =
[
𝜔𝑖 (𝑡)

]𝑛
𝑖=1. If neuron 𝑖 activates at time 𝑡 (given by eq. (1)), 𝜔𝑖 (𝑡) = 1,

otherwise neuron 𝑖 is quiescent and 𝜔𝑖(𝑡) = 0.

𝜔𝑖(𝑡) ∶=

{
1 if 𝑉𝑖 (𝑡) ≥Θ ,

0 if 𝑉𝑖 (𝑡) <Θ .
(3)

The dynamic evolution of the membrane potential of neurons (nodes) in the system is given by:

𝑽 (𝑡+Δ) = 𝑭 (𝑽 (𝑡)) (4)

Where 𝑭 =
[
𝐹𝑖

]𝑛
𝑖=1. In the non-refractory period of the neuron, the model evolves as follows:

𝐹𝑖(𝑉 (𝑡)) = 𝛾𝑉𝑖 (𝑡) (1 −𝜔𝑖 (𝑡)) +
∑
𝑗∈𝛼

𝑠𝑗𝑖𝜔𝑗 (𝑡− 𝜏𝑗𝑖), (5)

where 0 < 𝛾 ≤ 1 is the membrane voltage decay constant, 𝑉𝑖 (𝑡) is the membrane voltage of node 𝑖, 𝛼 is the set of signals that arrived
at node 𝑖 at time 𝑡, 𝑠𝑗𝑖 is the synaptic weight between neuron 𝑗 and 𝑖, 𝜏𝑗𝑖 is the delay between neurons 𝑗 and 𝑖, and 𝜔𝑗

(
𝑡− 𝜏𝑗𝑖

)
indicates the activation of node 𝑗 at time 𝑡 − 𝜏𝑗𝑖. In words, at any given time 𝑡, either the current membrane potential, 𝑉𝑖(𝑡), decays
until 𝑉𝑖 approaches 𝑉𝑚𝑖𝑛 or the current membrane potential is increased by the contribution of a new arriving signal multiplied by
the synaptic weight. Finally, we note that the refractory period is not explicitly discussed in the above description; it is a period of
3

time where the node is unresponsive to incoming signals and the membrane potential is held at 𝑉𝑚𝑖𝑛.

Heliyon 9 (2023) e13913V.K. George, A. Gupta and G.A. Silva

5. Defining the steady-state statistics

The period of steady-state activity of the network dynamics is defined as the repeating or periodic set of network states that
the dynamics settle to after some transient activity. Given our network construction, the regimes of network activity are persistent
activity and neural death, i.e., cessation of all activity in the network. Although neural death is a type of steady state, it is the trivial
case in this work. Persistent activity can either eventually enter a periodic orbit of network states or continue to exhibit non-periodic
activity. In situations where it is difficult to determine a network’s steady-state behavior analytically, we forward calculate the
network activity to computationally tractable limits and analyze the resulting dynamics to determine the network’s SS-S.

Given that the state of the network is 𝝎(𝑡), we say that the network is in a steady state if for ∀𝑡 ≥ 𝑡𝑠𝑠

𝝎(𝑡+ 𝑐) = 𝝎(𝑡+ 𝑐 + 𝑇) (6)

where 𝑡𝑠𝑠 is the steady-state starting point, 𝑇 is the steady-state period, and 𝑐 is some arbitrary positive time shift.

The transient regime of the network’s dynamics is the evolution of 𝝎(𝑡) until it enters the steady state regime. Therefore, 𝑡𝑠𝑠 also
marks the end of the transient regime. Once the network activity has entered a periodic orbit, we define the period of steady-state
activity as the interval of time/time-indices it takes for the activity to repeat. In networks with many nodes or with some of feedback
mechanism that modifies the network parameters as a result of network activity, it is possible that the forward computation will not
have been calculated for a long enough data window for the entire network to exhibit steady-state behavior. The methods presented
in this paper can only determine the SS-S up-to the extent of the forward calculation, with the longest period equal to half the total
simulation time interval.

6. Methods for finding network steady-state statistics

6.1. Summation method

We develop the summation method using the simulation data set :

 =
{
𝝎(𝑡0),𝝎(𝑡1),𝝎(𝑡2)…

}
. (7)

In words,  is a set composed of vectors [𝜔𝑖 (𝑡)]𝑛𝑖=1, where 𝑛 is the number of nodes in the network. For simplicity, one can imagine 
as a matrix whose rows represent nodes and columns represent time. The state of node 𝑖 is given by 𝜔𝑖(𝑡) eq. (3), where 𝜔𝑖(𝑡) ∈ {0, 1}.
We assume the dynamics are sampled appropriately such that a node only activates once per time point at most. Each 𝜔𝑖(𝑡) is defined
over the interval 𝑡 ∈ [𝑡0, 𝑡𝑓], where 𝑡0 is initial observation time and 𝑡𝑓 is the final observation time. The signal 𝜔𝑖(𝑡) is comprised of
two parts: the transient part 𝑔𝑖(𝑡) which is defined over the interval 𝑡 ∈ [𝑡0, 𝑡𝑆𝑆𝑖

), and the periodic part ℎ𝑖(𝑡) which is defined over the
interval [𝑡𝑆𝑆𝑖

, 𝑡𝑓]. The network’s activity can be described by the following set of equations:

𝜔1(𝑡) = 𝑔1(𝑡) + ℎ1(𝑡),

…

𝜔𝑖(𝑡) = 𝑔𝑖(𝑡) + ℎ𝑖(𝑡),

…

𝜔𝑛(𝑡) = 𝑔𝑛(𝑡) + ℎ𝑛(𝑡).

(8)

Since ℎ𝑖(𝑡) is periodic and given the form of 𝜔𝑖(𝑡) in eq. (8), we can describe it using a sequence of delta functions:

ℎ𝑖(𝑡) =
𝑟∑

𝑚=1
(𝛿(𝑡−𝑚𝑏1) +⋯+ 𝛿(𝑡−𝑚𝑏𝑞)). (9)

In eq. (9) there are a total of 𝑞 activations per period and 𝑟 total periods. Each element of the sum is the time of activation in some
𝑚𝑡ℎ period, where 𝑚 is a multiple of the fundamental period. Note, during implementation, care must be taken for the final period in
the data window because it is likely to be a fraction of a period.

To find the SS-S of the system, we start with the SS-S of each 𝜔𝑖(𝑡) (SS-S-i). SS-S-i is comprised of the steady-state start point and
steady-state period. After all the steady-state start point are determined for each 𝜔𝑖(𝑡), the latest steady-state start point across all
𝜔𝑖(𝑡) is used as the steady-state start point of the system. We define the steady-state period for the system as the longest period across
all 𝜔𝑖(𝑡).

To determine the SS-S-i for the 𝑖𝑡ℎ node in the network we use 𝑧𝑖(𝑘, 𝑇):

𝑧𝑖(𝑘,𝑇) =

𝑘+𝑇

∫
𝑘

𝜔𝑖(𝑡)𝑑𝑡, (10)

where 𝑘 is the candidate steady-state start point of 𝜔𝑖 and 𝑇 is the candidate steady-state period of 𝜔𝑖. The longest period sets the
upper-bound for 𝑇 , while the lower bound of 𝑇 is fixed to two consecutive time points. In the simulation time interval [𝑡0, 𝑡𝑓], we
4

define 𝑡𝑖 ∈ [𝑡0, 𝑡𝑓] to be the time of steady-state start point of 𝜔𝑖(𝑡), which is the start of ℎ𝑖(𝑡).

Heliyon 9 (2023) e13913V.K. George, A. Gupta and G.A. Silva

For all 𝑡 ≥ 𝑡𝑖, the signal 𝜔𝑖(𝑡) is in the steady-state regime. Let 𝜓𝑖 ∈ [0, 𝑡𝑓−𝑡02] be the length of the period of 𝜔𝑖(𝑡)’s steady state. We
evaluate 𝑧𝑖(𝑘, 𝑇) over the candidate periods 𝑇 ∈ [0, 𝑡𝑓−𝑡02] and candidate starting points 𝑘. Our goal is to find the correct 𝜓𝑖 and 𝑡𝑖.
The regimes of operation where we evaluate eq. (10) are

1) 𝑘 ∈ [𝑡0, 𝑡𝑖), 𝑇 ∈ [0, 𝑡𝑓−𝑡02]

2) 𝑘 ∈ [𝑡𝑖, 𝑡𝑓], 𝑇 ∈ [0, 𝑡𝑓−𝑡02]
a) 𝑘 ∈ [𝑡𝑖, 𝑡𝑓], 𝑇 ∈

{
𝜓𝑖,2𝜓𝑖,…𝑛𝜓𝑖

}
b) 𝑘 ∈ [𝑡𝑖, 𝑡𝑓], 𝑇 ∉

{
𝜓𝑖,2𝜓𝑖,…𝑛𝜓𝑖

}
We define some function 𝑓 (𝑥) to be uniformly zero starting at some constant 𝑐 when the function stabilizes at the value of zero

after some point 𝑐, i.e.,

∀𝑥 ≥ 𝑐 , 𝑓 (𝑥) = 0 (11)

We will use the notion of uniformly zero to analyze the results of eq. (10).

To determine the SS-S-i, we find the smallest 𝑘 and smallest 𝑇 in 𝐴, where

𝐴 =
{
(𝑘,𝑇) ∣ ∀𝑘 > 𝑐,

𝜕𝑧𝑖(𝑘,𝑇)
𝜕𝑘

= 0
}

. (12)

Note that A is a set of ordered pairs where each element is a candidate start time and candidate period.

To find the final (𝑘, 𝑇) for node 𝑖, first, we determine the steady-state start point of 𝜔𝑖(𝑡) (i.e., 𝑡𝑖) by finding the ordered pairs
containing the minimum 𝑘 in the set 𝐴:

𝑡𝑖 =
{
𝑘 ∣ min

𝑘
𝐴

}
. (13)

We now consider a subset of 𝐴, where the first elements in the ordered pairs–the candidate start time–are the same, but the second
elements–the candidate periods–are different due to the presence of harmonics of the fundamental period. The steady-state period of
𝜔𝑖(𝑡) (i.e., 𝜓𝑖) is

𝜓𝑖 =
{
𝑇 ∣ min

𝑇
𝐴
||||𝑘=𝑡𝑖

}
. (14)

Once we determine the final 𝑡𝑖 and 𝜓𝑖 for each node, the maximum values across all nodes are selected for the SS-S of the system.

A limitation of using uniform sampling is its computational cost, which is a function of the sampling rate. To apply the summation
method in the non-uniform sampling setting we define ̃:

̃ =
{
𝝎(𝑡)|∃𝜔𝑖(𝑡) = 1

}
. (15)

One can imagine ̃ as a matrix whose columns contain at least one node activation, that is, every column has at least one row with a
value of 1. We use ̃ in Section 7.3 to find the SS-S in an asynchronous, event-based, non-uniformly sampled simulation framework.
Generally, ̃ can be used in settings where the data is not guaranteed to be uniformly [52] or optimally sampled. For example,
we may not be able to identify the optimal sampling rate a priori for networks whose dynamics are affected by evolving network
parameters that affect the sampling rate. However, under the non-uniform sampling setting eq. (15), the summation method may not
capture the true SS-S, and this is a limitation. Incorrect SS-S can result when there is a contraction or expansion of timescales during
the time interval of node activations, or when the relative sequence of node activations does not change. But in some applications,
approaches like the summation method are satisfactory, for example in biological neural systems where a global clock does not exist
[53].

6.2. String search method

To apply the efficient string search method described later in Section 6.2.3, we must convert the dynamic evolution of the system
(Section 4) into a string description. We use either  and ̃ as the input to the string search methods. To construct a string
representation from a sequence of activations, we define a labeling function that maps activations to an alphabet of fixed length
strings of size 𝑠. The alphabet is denoted as Σ𝑠.  ∶ 𝝎 →

{
Σ𝑠, 𝜖

}
, that is,  maps activations of neurons to fixed length strings Σ𝑠

and quiescent states to the empty string 𝜖, resulting in an alternate description of ̃ that was the non-uniform sampling description
defined in eq. (15). We let 𝜎𝑠,𝜔𝑖

be the symbol associated with the activation of the 𝑖𝑡ℎ node. For brevity, we will drop the subscript
𝑠 and assume a fixed length string in place of the symbol. Note that in the string we do not distinguish the time of activation; the
string only contains information about the set of nodes which activated. We define  as the set of strings representing the evolution
of the network. The ordering of this set is based upon the ordering of ̃. The input to the string run-finding algorithm is

{ }

5

 = 𝜎𝝎(0), 𝜎𝝎(1) … . (16)

Heliyon 9 (2023) e13913V.K. George, A. Gupta and G.A. Silva

Fig. 1. Graphical representation of a set of ordered node activations that we will convert to a string of symbols. The activity of two nodes is presented. The y-axis
represents the state of the nodes. 12a12a212 is a possible encoding of the signal.

To consider uniform sampling, the only change required is for  to assign a string to the quiescent states of 𝝎(𝑡) rather than
mapping those states to 𝜖, thereby we construct an alternate to  (eq. (7)). Uniform sampling increases run time of the string search
methods due to the increase in the number of time samples.

6.2.1. An example string transformation

In this section we present a simple technique to convert a given discrete signal 𝑥(𝑡) into a string. We begin by assuming that a
system has 𝑛 nodes that can activate. We then enumerate each node arbitrarily and keep it fixed over the course of the analysis.
We start with an empty string, and, since our system has information about which node activated, if node 𝑖 activated at time 𝑡 = 1,
we simply append 𝑖 to the string. As such, we append each subsequent node activation to the string. In the case of multiple node
activations at the same time, we generate a new enumeration and append it to the string. Consider a network with two nodes
whose activation pattern is depicted in Fig. 1: Node 1 activates at 𝑡1, node 2 activates at 𝑡2, both activate at 𝑡3, and so on. Now
we enumerate the event of the two nodes activating simultaneously with an arbitrary character (here “a”) and return the following
output: 12a12a212. By doing so, we convert our signal into a string and reduce the problem from finding the steady state in a
complex signal to finding a repeating substring. Note that when encountering events such as simultaneous activation, we use an
unused character to represent it and store the mapping in a hash table.

6.2.2. Naive string search

In this section we present a naive string approach for periodicity detection, it is a prelude to the string run-finding algorithm
discussed in Section 6.2.3. The input to the string search uses the construction from Section 6.2. Here we do a brute force search
to identify a repeating, terminating substring in our signal-converted string. To do so, we loop over the period of the expected
steady-state pattern, and for each period, we loop over the start time, essentially testing all 𝑛(𝑛 + 1)∕2 substrings as the candidate
steady-state pattern. Formally, given a string of length 𝑛, we find the pattern using Algorithm 6.2.2. The search terminates when the
algorithm finds the shortest substring that repeats until the terminus of the input string. The outputs of the procedure are the SS-S.
A basic analysis of the pseudo-code yields an 𝑂(𝑛3) time complexity, which is improved upon in the next section.

6.2.3. Efficient string search

The efficient algorithm uses the input  (eq. (16)). We let 𝜎 [𝑡] denote the 𝑡𝑡ℎ location in  . In stringology [37,54,55], a string
of length 𝑛 has period 𝑝 if 𝜎 [𝑡] = 𝜎 [𝑡+ 𝑝] for any 𝑡, such that 1 ≤ 𝑡 ≤ 𝑛 − 𝑝. If we were to consider the case where a string can be
decomposed into sub-strings 𝑢, 𝑣, and 𝑤, such that 𝑢𝑣𝑘𝑤, then string 𝑢 is considered the prefix of input string, string 𝑣 is the period
repeated 𝑘 times, and the string 𝑤 is considered the suffix of the input string.

Due to our interest in finding the starting time and period of the steady state, we are concerned with strings that end with
repetition. More specifically, strings that end at some location in the period 𝑣 during the course of a run [39]. In stringology, a
primitive string is a string that is the fundamental period of the repetition (and can not be further compressed into the form 𝑣𝑘). The
leftmost primitive string is called maximal, that is, if the primitive string can not be shifted anymore to the left. If the primitive string
could be shifted further left, a new prefix and an addition to the 𝑘𝑡ℎ repetition would result, and that point would be the leftmost
maximal. A run is defined as the maximal, fractional, and primitively-rooted repetition (example: 12312312312 = (123)3

2
3 , where the

run is 123). Fractional runs take into account the stop of the forward calculation at some fraction of the period. Now we have the
stringology terminology to describe our needs. We are interested in strings which end in runs, i.e., periodic sequences. Moreover, we
are interested in the leftmost primitively-rooted repetition of that last run because that is the starting point of steady state.

The problem of finding runs in strings has been solved using O(n) time algorithms [43], where 𝑛 is the length of the string.
Modern run-finding algorithms [41,46,56,57] rely on building and analyzing complex data structures that are amenable to finding
repetitions in strings. Algorithms which detect runs follow a general procedure. First, a suffix array is built [58,59]. Then, the Longest
Common Prefix [60] is calculated. Next, the leftmost runs are found using Lempel-Ziv Factorization [61,62]. Finally, all maximal
6

repetitions are found using Kolpakov and Kucherov’s [43] linear time algorithm.

Heliyon 9 (2023) e13913V.K. George, A. Gupta and G.A. Silva

Algorithm 1 Naive Find Steady-State Statistics.

Input signal

Output repeating-signal, steady state: start & period

1: procedure FINDSTEADYSTATE

2: str ← signal

3: strlen ← length of signal

4: perlen ← length of candidate period length

5: index ← length of current position in string

6: for perlen = 1 to strlen do:

7: for index = 0 to strlen-1 do:

8: substring = str[index:index+perlen]
9: if CheckTerm(substr, str, index, perlen) then

10: repeating-signal ← substring

11: start-steady-state ← index

12: period ← perlen

13: return repeating-signal, start-steady-state, period

14: procedure CHECKTERM

15: str ← signal

16: substring ← candidate steady state

17: index ← candidate start point

18: perlen ← length of candidate period length

19: while i = index to strlen-perlen do:

20: if substring != str[i:i+perlen] then

21: return False

22: return True

Fig. 2. An illustration of the summation method. (a) An idealized 1𝐻𝑧 signal, sampled at 100𝐻𝑧, comprised of Dirac impulses. The duration of the signal is 4𝑠. (b)
The sum of pulses over the candidate starting points and candidate periods, 𝑧𝑖(𝑘, 𝑇), eq. (10). The values of the heat map are defined over the set of possible starting
points and periods, whereas, the white-space corresponds to the starting points and periods that can not be determined given the data. For example, we can not
determine periods longer than half the data because we do not observe a repetition. (c) A plot of the difference of the sum of spikes with respect to starting position,
𝜕𝑧𝑖

𝜕𝑘
(the condition of eq. (12). The two leftmost horizontal red lines refer to the period and the harmonics of the original signal. The red horizontal lines indicate

when the difference is zero from its leftmost end, the start time, to the end of the data. At the leftmost position of the red line is the start time of steady state. The
heat map indicates the values of the differences. (d) A Poisson distributed sequence of Dirac impulses sampled at 100𝐻𝑧. (e) Its sum of spikes, eq. (10). Note that the
symmetries present in panel (b) are absent. (f) A plot of the difference of the sum of spikes with respect to starting position, 𝜕𝑧𝑖

𝜕𝑘
(the condition of eq. (12). As indicated

by the lack of long contiguous red horizontal lines, there is no dominant start time and harmonic.

Once the maximal runs have been found, we store the runs that end at the input string’s final character position, and we output
the run which has the minimum starting position. The primitively-rooted repetition is the period of steady-state activity. We detected
7

runs using runFinder, which is an implementation courtesy of Dr. Hideo Bannai of Tokyo Medical and Dental University in Japan.

Heliyon 9 (2023) e13913V.K. George, A. Gupta and G.A. Silva

6.3. Methodological limitations

Both the summation and string search periodicity detection methods have limitations. For example, we only considered the binary
node states, but other network observables may be more appropriate indicators of steady state, such as the ordered list of node
activators (that is upstream nodes whose signals cause a target node to activate). While the string search method can accommodate
an activators list, the summation method can not without post-processing.

The summation method uses the latest start time and the longest period across all nodes; therefore, we are assured that the
system is in a steady state. But while the system is in a steady state, the outputted period of the steady state may include non-integer
multiples of the periods of node activity. That is, nodes with shorter periods would terminate midway through their 𝑛𝑡ℎ period, here
𝑛 is a real number greater than or equal to 1, at the time point when the node with the longest period ends. If the requirement is to
capture integer multiples of the periods of all nodes dynamics, then the greatest common divisor of all their periods is required. The
resulting value may exceed the feasible observation time of the network’s dynamics.

Non-uniform sampling causes a few issues with both the summation and string search methods. Situations can arise where there
is a contraction or a dilution of time-scales, but the order of network activity is unchanged. This can only be detected when the
system is observed through uniform sampling. Any drift in network activity without causing a reordering in ̃ (eq. (15)) will be
treated the same by both the summation and string search methods.

Another non-uniform sampling issue that afflicts the summation method is presence of an incorrect initial set of activations in the
first period. This issue does not occur in the uniform sampling setting. A node activation that is not actually part of the steady-state set
of node activations may erroneously be included. This happens when the number of time indices between the erroneously included
activation and the actual steady-state starting point is less than the number of time indices between the spacing of any of the node
activations of the actual steady-state period. Outside the first period, this issue will not arise because of the strict requirement that the
number of spikes in the smallest period from the start to finish be maintained between all consecutive starting points. This issue can
be corrected by post-processing the periodic network activity by comparing the contents of the detected periods. When an erroneous
spike is detected, one solution is to remove the erroneous spike from consideration by flipping the corresponding bit, rerunning the
algorithm, and rechecking for alignment.

7. Applications

7.1. Summation method: 1 Hz signal

We illustrate the summation method using as input the waveform in Fig. 2a, which is an ideal 1𝐻𝑧 impulse train sampled at
100𝐻𝑧. The signal consists of a sequence of zeros and ones. In Fig. 2b, we evaluate 𝑧𝑖(𝑘, 𝑇), eq. (10). In Fig. 2c, we show 𝜕𝑧𝑖

𝜕𝑘
= 0

a condition in eq. (12). The red horizontal lines in Fig. 2c indicate the candidate periods and starting points which correspond to
eq. (12).

The candidate periods fall into two categories. Category 1 encompasses the two red horizontal lines which share a start time of 0
seconds, and category 2 encompasses all the other red horizontal lines which start at start time 1 second, 2 seconds, and 3 seconds.
For the signal’s SS-S, we choose the earliest start time per eq. (13) and the shortest period per eq. (14). The period of 1 second
explains the data from a start time of 0 seconds onward. The other red horizontal lines are a result of the envelopes for some range
of (𝑘, 𝑇) in eq. (10) as noted in Section 6.1, meeting the condition of eq. (11) but explaining less of the data.

7.2. Summation method: randomized impulse train

Here we input a Poisson distributed sequence of impulses as shown in Fig. 2d to the summation method. As a result of applying
eq. (10), we observe in Fig. 2f that there are bands of values of start times and period lengths which have the same number of spikes.
However, the bands of start time are not horizontally contiguous, which is our requirement for the SS-S. One way in which we can
handle noise is by relaxing the criteria for the change in the number of spikes in adjacent starting points.

Given the stochastic nature of input signal, we observe that Fig. 2i no longer exhibits the kind symmetry found in Fig. 2c.
Therefore, the uniformly zero condition eq. (11) is only satisfied in eq. (12) for 𝑘 at the terminus of the data window. In other words,
all the zero differences (time points meeting the uniformly zero condition) are relegated to a few starting points at the end of the
data-window, and there are no periods of non-negligible size, or easily discerned harmonics thereof. In such cases, when the system’s
dynamics has not entered the regime of periodic activity, we may still end up with candidate periods and starting points due to an
unchanging number of spikes in the last few starting points, 𝑘, where the uniformly zero criteria is met. Therefore, one must make
sure that the forward calculations are done for long enough to ensure that the system is actually in steady state. A simple empirical
workaround is to ensure that the steady-state starting point occurs for at least some fraction of the forward-calculated data-window’s
length.

7.3. Summation method: non-uniformly sampled network dynamics

Here, we apply the summation method to detect the SS-S of the dynamics on a biological spiking neural network as described in
Sections 3 and 4. The network under consideration is illustrated in Fig. 3a. The complexity of the dynamics in this network arises
8

from the interplay of edge delays and node refractory periods. We introduce an image of a hand written digit from the MNIST

Heliyon 9 (2023) e13913V.K. George, A. Gupta and G.A. Silva

Fig. 3. (a) A sample network diagram. The Input layer consists of 784 nodes. The Recurrent/Hidden layer contains 5 nodes. The Output layer contains 4 nodes. The
values of the Input layer are set based upon the MNIST images. If the pixel contains a non-zero value, then the corresponding input node is activated and is part of the
initial condition of the network. The network’s connectivity is as follows: Feed-forward connections from the Input layer to the Hidden layer, recurrent connections
within the Hidden layer, and feed-forward connections from the Hidden layer to the Output layer. A sample of the edge delays are shown. We used a node refractory
period of 1∕24𝑠, a node activation threshold of Θ = 2, a membrane decay constant of 𝛾 = 𝑒−2Δ𝑡 , where Δ𝑡 is the current time minus the signal arrival time. We set the
synaptic weights and the outgoing signal amplitudes to unity. (b) The resulting network activity of the nodes in the Output layer resulting from activity of the Input
layer. The network activity is shown as a raster plot, eq. (3) We forward calculate the network dynamics using eq. (5) to 50𝑠. We chose this length of simulation time
for two reasons. First, the length was long enough to make sure that most initial conditions lead to steady-state activity for our purposes. Second, that we are able to
observe multiple periods of steady-state activity to make visualization of the SS-S easier.

database [63] as binary vector at time 𝑡 = 0 to the input layer nodes of the network and analyze the resulting dynamics, eq. (5). In
order to get a sense of the data we wish to analyze, we created a raster plot of the output nodes’ activity (Fig. 3b).

We construct the input to the summation method using ̃ (eq. (15)); this puts us in the non-uniform sampling setting. We show
the start time index and the size of the periods in units of time indices in Figs. 4a, 4b. Note that each iteration through the method is
done on a per node basis, and the SS-S of the system is based on the latest start time and the longest period among all the analyzed
nodes.

As with the previous examples, the smallest value on the abscissa, where the red horizontal line begins, is the start of the
steady-state behavior. Each successive red line (from the set of red lines with the same minimum start time) on the ordinate represents
the harmonics of the fundamental period of steady-state activity.

In Fig. 4 we switched from using seconds to using time indices. While the start time index corresponds to a specific absolute
time value (seconds) in the non-uniform setting, the number of time indices which make up a period corresponds to a range of
absolute time values. Fig. 5a illustrates the variation in the absolute time for a fixed period as a function of the start time index. By
evaluating eq. (10) for a fixed period, in units of time indices, and across start time indices, we observe the fluctuations in period
length measured in absolute time between start times. This is due to non-uniform sampling. The absolute time between adjacent
9

activations varies; therefore, moving one time index does not correspond to a move of one absolute time unit.

Heliyon 9 (2023) e13913V.K. George, A. Gupta and G.A. Silva

Fig. 4. (a) The sum of spikes, eq. (10), over candidate periods and starting indices for output node 1. Given our approach to the summation method in the non-uniform
sampling setting, it no longer necessary to discuss units in terms of absolute time (seconds). In the non-uniform sampling setting, the candidate periods and starting
points are selected and swept along the sampling points determined by the system’s node activations. For example, a period of length 𝑦 index units may refer to a
range of absolute times. As such, the candidate SS-S are determined based on indices rather than an absolute time measure. The system’s SS-S is determined from
analysis of all nodes in the network and from selecting the latest starting point and longest period amongst all nodes. As the size of the period increases, more node
activations are captured, resulting in higher values for the evaluated sums. (b) The first finite difference in index units, 𝜕𝑧𝑖

𝜕𝑘
(the condition of eq. (12). The result of

the difference is given by values of the heat map. The red horizontal lines denote where the uniformly zero condition is met. The starting point of steady state is
the minimum of the start indices of the red horizontal lines. The fundamental period of network activity is given by the lowest valued red horizontal line with the
minimum starting index. Each harmonic of the fundamental period is given by the incrementally higher horizontal red lines with the same starting indices. The red
horizontal lines at the end of the data range of starting points correspond to consecutive candidate periods with the same number of spikes. In this situation, the
candidates are easily filtered using the minimum starting point criteria. Light blue values correspond to adjacent starting points whose difference in the number of
spikes is 0.

Each horizontal line in Fig. 5a corresponds to a harmonic of the period. The fluctuations in a particular horizontal line in Fig. 5a
correspond to the aforementioned absolute time between the start of the period and end of the period. Fig. 5b shows the number of
spikes which are present in each harmonic of the period. There is a one-to-one correspondence between Figs. 5a and 5b in terms of
bottom to top ordering of curves. As expected, and required by eq. (6), once the system is in steady state, the number of spikes in a
period stabilizes to the steady-state number of spikes in a period. The number of spikes in a period is unchanging over a period for
𝑡 ≥ 𝑡𝑆𝑆 . Each vertically successive horizontal curve in Fig. 5b shows the number of spikes in each of the corresponding harmonics of
the period.

7.4. String search method: non-uniformly sampled network dynamics

We apply the efficient string search method described in Section 6.2.3 to detect the SS-S of the network dynamics considered in
Section 7.3. We use eq. (16) to construct the input to the run-finding algorithm. Since the network has a total of 793 nodes (784
10

Input layer nodes associated with the pixels in each image, 5 Hidden layer nodes, and 4 Output layer nodes), each node is associated

Heliyon 9 (2023) e13913V.K. George, A. Gupta and G.A. Silva

Fig. 5. We show the effects of the summation method on non-uniformly sampled network dynamics (following from Fig. 4) as it pertains to both time indices of
the detected period and the number of spikes in the detected period, as well as how the two relate to absolute time. In (a), the abscissa shows the candidate start
indices and the ordinate shows the length of the period in time units of seconds. Each horizontal line in the plot corresponds to a previously determined harmonic–the
horizontal red lines from Fig. 4b. The bottom-most horizontal line corresponds to the fundamental period, and each subsequent one corresponds to the harmonics of
the fundamental period. Fluctuations of each horizontal line correspond to the length of the period in seconds when counting the fixed number of time indices from
the start index to the end index of a given period. Because of non-uniform sampling, the fluctuations remain. This is in contrast to (b), where the sum of spikes in
each period during steady state is constant. In (b), we count the number of spikes in each period as a function of the start index (eq. (10)), and we can clearly see that
after the inception of steady-state dynamics, the number of spikes stabilizes to the steady-state value, that is, a constant value for the sum of the spikes. The ordinate
is a count of the number of spikes. The abscissa is the start index. And each horizontal line corresponds to a harmonic, the bottom-most one corresponding to the
fundamental period and each subsequent one a harmonic.

with a string of 3 symbols. Node 1 will have a label 001, node 2 will have label 002, and so on up to node 793 with label 793. We
do not delimit the symbols with commas or other delimiters as those symbols increase the processing time.

Table 1 shows a sample output for illustration. For a string of length 8586 symbols, which translates to 2862 node activations, the
run-finding algorithm finds a string of length 81 symbols, which is 27 node activations in a steady-state period and a run of length
6090 symbols, which translates to 2030 steady-state node activations. We use the precise SS-S to construct a graph of activations
based on the set of causal relationships between node activations up to the point where the network dynamics stop producing new
information; this occurs after the system enters steady state.

7.5. Constructing spatial-temporal graph representation of network dynamics

Using the causal node activity and knowledge of the network dynamics’ SS-S, we construct a finite graph representing the
dynamics of the network. The nodes of the graph refer to (𝑣𝑖, 𝑡𝑘), where 𝑣𝑖 is the neuron which activates at some time 𝑡𝑘. The edges
of the graph represent the causal activators [21] of (𝑣𝑖, 𝑡𝑘). Every time a neuron is activated, a new node, (𝑣𝑖+1, 𝑡𝑘+1), is added to
11

the graph. As such, the child nodes are the subsequent nodes that are causally activated. A set of root nodes represents the initial

Heliyon 9 (2023) e13913V.K. George, A. Gupta and G.A. Silva

Table 1

Sample outputs for the SS-S of the system using the efficient string search method. Each of the entries is in either string character units or refers to specific node
numbers in a sequence. String character units refer to the index (rows 1 and 2) or interval (row 3) of a symbol or symbols in a string sequence. When mapping from
String Character Units to network node activations, care must be taken to account for the length of the node’s symbolic description. For example, because we are
using a network with 793 total nodes and using the decimal counting system, we use three symbols to describe every node, and each of the values in string character
units is divisible by three. Row 4 shows a sequence of node numbers which represents the sequence of node activations in one period in the steady-state regime.
We inserted commas in row 4 only to make the nodes involved in the sample period more readable; inserting extraneous symbols into the string finding algorithm
increases the run time and may not have enough benefit.

Sample Start Index (String Character Units) 2496

Sample Stop Index (String Character Units) 8586

Sample Period Length (String Character Units) 81

Sample Period (Node Numbers) 786, 788, 789, 785, 793, 791, 792, 790, 787, 786, 789, 788, 793, 785, 791, 792, 790, 787, 786, 789, 788, 785,
793, 791, 792, 790, 787

conditions and external perturbations to the network. By construction, we are able to distinguish repeated node activations, while
still being able to construct subgraphs of neuron-neuron interactions.

Given this network representation of the dynamics, we are able to use network tools to do comparisons. Without the SS-S, it is
difficult to determine the which portions of the network dynamics are relevant. Moreover, for situations where network dynamics do
not taper off into quiescence, the SS-S provides a bound on the construction of the spatial-temporal graph. Finally, to do a comparison
of representations from different sets of network dynamics, knowledge of the dynamical regime (i.e., the transient or the steady-state
portions) is important.

8. Conclusion and future work

In this paper we propose methods to analyze network dynamics and show applications of those methods. Without these methods,
at one extreme in a sense, analysis of a network’s dynamics is based on an unknown portion of its transient activity because there is
no way to know whether the dynamics have entered the steady-state regime. This results in the omission of information produced by
the dynamic evolution of the model. At the other extreme, analysis of a network’s dynamics is based on data that over-represents the
steady-state regime because of the lack of precise knowledge about when the steady-state regime began and the number of periods
present in the data. This results in a waste of computational resources and an imbalance when making quantitative comparisons
of different sets of dynamics. At worst, the analysis of a network’s dynamics is made without any knowledge at all of the dynamic
regimes being analyzing. The determination of whether a system is in the steady-state or transient regime implicates different
mathematical tools and considerations which come to bare during the analysis of the system’s response.

This paper makes three important contributions toward the identification and analysis of normalized comparisons of network
dynamics. First, we developed methods to calculate the precise SS-S of network dynamics using efficient algorithms, with each SS-S
finding method providing different advantages. The summation method can be extended to a noisy setting by relaxing the uniformly
zero criteria while maintaining the computational complexity. And the string search method utilizes a more efficient but less flexible
algorithm because its computational complexity increases when considering noise. In addition, it can only handle limited noise types
(insertion and deletion).

Second, we successfully applied our methods to idealized signals and the dynamics of biological spiking neural networks. Our
methods detected the SS-S of a spiking neural network with complex dynamics resulting from the interplay between edge signaling
delays, node refractory periods, and synaptic weights. Further comparison between network topologies and steady-state start time is
left to future works.

Third, we showed how to transform network dynamics into finite spatial-temporal graph representations using the SS-S to bound
the construction. The graph representation we constructed reflects one of several representations to describe the dynamics [17,18,22].

While the methods in this paper have application to a number of systems, we suspect that larger and/or more complex
networks–including networks with variations in parameters over long time scales–still pose practical challenges to finding the SS-S.
For example, in some models of biological spiking neural networks forward calculation of the network dynamics until stead state is
reached may be computationally infeasible because the inception of the steady state regime has an exponential dependence on the
network’s size [27,50]. This limitation can be partly mitigated if one is only interested in transient stability, which in this context we
define as the periodic network dynamics over some time interval and of some subset of the entire network. Our proposed methods
for finding the SS-S can easily be extended to detect transient stability by defining observational sets of interest.

A potentially fruitful future direction for this work is to automate the stopping criteria for forward computation of complex
networks. If steady state detection could be performed in parallel with forward computation, periodicity could be used to stop the
forward computation of network dynamics. This might be accomplished with an online, efficient algorithm for string repetition
detection, that is, one that does not require recomputing large data structures to incorporate newly appended symbols to the string
[64].

Another extension of the string search algorithm is to incorporate additional observed network states and parameters. These
could be, for example, causal node activators, weighted synaptic signal contributions, times between activations, etc. This can be
done by extending the library of symbols included in the string and paying a relatively small computational penalty for increasing
12

the complexity to 𝑂(𝑘𝑛), where 𝑘 is the symbol length. For example, in the case of adding causal node activators, let us assume there

Heliyon 9 (2023) e13913V.K. George, A. Gupta and G.A. Silva

are, on average, three activators required per activation. If so, we would extend the size of the string by a multiple of four. Any
parameter that can be translated into a symbolic representation can be included in the string representation for analysis. It is up to
the user to determine the appropriate trade-offs between the parameters for inclusion and the computational costs associated with a
longer string.

Although the graph representation of the network activity is agnostic to the steady state finding process, the number of
observations that need to be included to build a finite and compact graph needs to be determined before the method can be applied.
By bounding the network dynamics, various network models and parameters can be evaluated. Using the techniques developed in
this work, we can quantitatively differentiate between network activity regimes and represent network dynamics in a normalized
manner.

Funding statement

This work was supported by unrestricted funds to the Center for Engineered Natural Intelligence at the University of California
San Diego.

CRediT authorship contribution statement

Vivek Kurien George (VKG); Arkin Gupta (AG); and Gabriel A. Silva (GAS): Analyzed and interpreted the data and wrote the
paper.

Vivek Kurien George (VKG); Arkin Gupta (AG): Performed the experiments. Contributed reagents, materials, analysis tools or data.

Vivek Kurien George (VKG): Conceived and designed the experiments.

Declaration of competing interest

The authors declare no competing interests.

Data availability

No data was used for the research described in the article.

Acknowledgements

The code for runFinder is courtesy of Dr. Hideo Bannai (https://github .com /hdbn /runfinder).

References

[1] E. Bullmore, O. Sporns, Complex brain networks: graph theoretical analysis of structural and functional systems, Nat. Rev. Neurosci. 10 (3) (2009) 186–198.

[2] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Complex networks: structure and dynamics, Phys. Rep. 424 (4–5) (2006) 175–308.

[3] S. Wasserman, K. Faust, Social Network Analysis: Methods and Applications, Social Network Analysis: Methods and Applications, Cambridge University Press,
1994.

[4] D.S. Bassett, A.N. Khambhati, S.T. Grafton, Emerging frontiers of neuroengineering: a network science of brain connectivity, Annu. Rev. Biomed. Eng. 19 (1)
(2017) 327–352.

[5] N. Deo, Graph theory with applications to engineering and computer science, Networks 5 (3) (1975) 299–300.

[6] L.d.F. Costa, O.N. Oliveira Jr., G. Travieso, F.A. Rodrigues, P.R.V. Boas, L. Antiqueira, M.P. Viana, L.E.C. Rocha, Analyzing and modeling real-world phenomena
with complex networks: a survey of applications, Adv. Phys. 60 (3) (Jun. 2011) 329–412.

[7] C. Donnat, S. Holmes, Tracking network dynamics: a survey using graph distances, Ann. Appl. Stat. 12 (2) (Jun. 2018) 971–1012.

[8] M. Salehi, R. Sharma, M. Marzolla, M. Magnani, P. Siyari, D. Montesi, Spreading processes in multilayer networks, IEEE Trans. Netw. Sci. Eng. 2 (2) (Apr. 2015)
65–83.

[9] M.E. Newman, Spread of epidemic disease on networks, Phys. Rev. E 66 (1) (2002) 016128.

[10] M. Kivela, A. Arenas, M. Barthelemy, J.P. Gleeson, Y. Moreno, M.A. Porter, Multilayer networks, J. Complex Netw. 2 (3) (Sep. 2014) 203–271.

[11] S. Boccaletti, G. Bianconi, R. Herrero, C. Genio, J. Gómez-Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang, M. Zanin, The structure and dynamics of multilayer
networks, Phys. Rep. 544 (Nov. 2014) 1–122.

[12] Z. Wang, C. Xia, Co-evolution spreading of multiple information and epidemics on two-layered networks under the influence of mass media, Nonlinear Dyn.
102 (4) (2020) 3039–3052.

[13] Z. Wang, C. Xia, Z. Chen, G. Chen, Epidemic propagation with positive and negative preventive information in multiplex networks, IEEE Trans. Cybern. 51 (3)
(2020) 1454–1462.

[14] Q. Yin, Z. Wang, C. Xia, M. Dehmer, F. Emmert-Streib, Z. Jin, A novel epidemic model considering demographics and intercity commuting on complex dynamical
networks, Appl. Math. Comput. 386 (2020) 125517.

[15] C. Brennan, A. Proekt, A quantitative model of conserved macroscopic dynamics predicts future motor commands, eLife 8 (Jul. 2019) e46814.

[16] K. Morrison, C. Curto, Predicting neural network dynamics via graphical analysis, in: Algebraic and Combinatorial Computational Biology, Elsevier, 2019,
pp. 241–277.

[17] J.M. Roldan, S.P. G, V.K. George, G.A. Silva, Construction of edge-ordered multidirected graphlets for comparing dynamics of spatial temporal neural networks,
arXiv :2006 .15971, 2020.

[18] V.K. George, F. Puppo, G.A. Silva, Computing temporal sequences associated with dynamic patterns on the C. elegans connectome, Front. Syst. Neurosci. 15
(2021) 15.
13

[19] P.Y. Wang, S. Sapra, V.K. George, G.A. Silva, Generalizable machine learning in neuroscience using graph neural networks, Front. Artif. Intell. 4 (2021) 4.

https://github.com/hdbn/runfinder
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib7CB599800B8BCA79BFE1B4737A8969ECs1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib15B1CE295CDBCC5A7F3D63FD9227794As1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib8008ED374978884450A474739243678Ds1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib8008ED374978884450A474739243678Ds1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib0A542B1C30A159767FC7CBA29403267Bs1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib0A542B1C30A159767FC7CBA29403267Bs1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bibC6FA30E1BBE4687E021D21F93502BB25s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib0F2A68B83E593B81CFACB4E81C6D905Bs1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib0F2A68B83E593B81CFACB4E81C6D905Bs1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib4CDD56EBD93F16AB82CB6622DD9DC995s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bibA9190C9512C3DD5A8A6735A230F3C257s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bibA9190C9512C3DD5A8A6735A230F3C257s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib8A887827AD3E50E5B936DF8095DA7F4As1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib16058693E561CBC60FEE7AB4D01FC8EBs1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bibDF1A3DB8E7CD526C4D376AA01D5EC0CAs1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bibDF1A3DB8E7CD526C4D376AA01D5EC0CAs1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib9B2E7399D356A6ABA589FF82FDF647A6s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib9B2E7399D356A6ABA589FF82FDF647A6s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bibF214A0EB9CC8DF69D7E4F9D7F13A700Cs1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bibF214A0EB9CC8DF69D7E4F9D7F13A700Cs1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bibDCA0A9A02C553DB59FAC3ED48F55C3C7s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bibDCA0A9A02C553DB59FAC3ED48F55C3C7s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib5C7CA7DFBCF03C8E9EDC348E6C012E94s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bibFC87076F2CAD8C5333C166B175B46051s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bibFC87076F2CAD8C5333C166B175B46051s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib0C23F5135D1257FF173684D2791342F6s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib0C23F5135D1257FF173684D2791342F6s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib02E0835DEC8E467AC67E5D942DE50E38s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib02E0835DEC8E467AC67E5D942DE50E38s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib1B477AF5502335FCB09AD20EC0F68728s1

Heliyon 9 (2023) e13913V.K. George, A. Gupta and G.A. Silva

[20] M. Buibas, G.A. Silva, A framework for simulating and estimating the state and functional topology of complex dynamic geometric networks, Neural Comput.
23 (1) (2011) 183–214.

[21] G.A. Silva, The effect of signaling latencies and node refractory states on the dynamics of networks, Neural Comput. 31 (12) (2019) 2492–2522.

[22] C. Curto, What can topology tell us about the neural code?, Bull. Am. Math. Soc. 54 (1) (Sep. 2016) 63–78.

[23] H. Ju, D.S. Bassett, Dynamic representations in networked neural systems, Nat. Neurosci. 23 (8) (2020) 908–917.

[24] M.D. Humphries, Dynamical networks: finding, measuring, and tracking neural population activity using network science, Netw. Neurosci. 1 (4) (2017) 324–338.

[25] O. Sporns, Graph theory methods: applications in brain networks, Dialogues Clin. Neurosci. 20 (2) (2018) 111.

[26] C. Giusti, R. Ghrist, D.S. Bassett, Two’s company, three (or more) is a simplex, J. Comput. Neurosci. 41 (1) (2016) 1–14.

[27] B. Cessac, A discrete time neural network model with spiking neurons: rigorous results on the spontaneous dynamics, J. Math. Biol. 56 (3) (Nov. 2007) 311–345
[Online]. Available: http://link .springer .com /10 .1007 /s00285 -007 -0117 -3.

[28] P.A. Anninos, Cyclic modes in artificial neural nets, Kybernetik 11 (1) (Jul. 1972) 5–14.

[29] E.N. Brown, R.E. Kass, P.P. Mitra, Multiple neural spike train data analysis: state-of-the-art and future challenges, Nat. Neurosci. 7 (5) (May 2004) 456–461.

[30] T. Donoghue, M. Haller, E.J. Peterson, P. Varma, P. Sebastian, R. Gao, T. Noto, A.H. Lara, J.D. Wallis, R.T. Knight, et al., Parameterizing neural power spectra
into periodic and aperiodic components, Nat. Neurosci. 23 (12) (2020) 1655–1665.

[31] M.A. McClarnon, Detection of steady state in discrete event dynamic systems: an analysis of heuristics, Ph.D. dissertation, University of Virginia, 1990.

[32] A.M. Law, W.D. Kelton, W.D. Kelton, Simulation Modeling and Analysis, vol. 3, McGraw-Hill, New York, 2000.

[33] M. Patel, N. Modi, A comprehensive study on periodicity mining algorithms, in: 2016 International Conference on Global Trends in Signal Processing, Information
Computing and Communication, ICGTSPICC, IEEE, 2016, pp. 567–575.

[34] M.G. Elfeky, W.G. Aref, A.K. Elmagarmid, Periodicity detection in time series databases, IEEE Trans. Knowl. Data Eng. 17 (7) (2005) 875–887.

[35] F. Rasheed, M. Alshalalfa, R. Alhajj, Efficient periodicity mining in time series databases using suffix trees, IEEE Trans. Knowl. Data Eng. 23 (1) (2010) 79–94.

[36] W.F. Smyth, Computing regularities in strings: a survey, Eur. J. Comb. 34 (1) (Jan. 2013) 3–14.

[37] M. Crochemore, C. Hancart, T. Lecroq, Algorithms on Strings, Cambridge University Press, 2007.

[38] H. Koponen, N. Mhaskar, W. Smyth, An overview of string processing applications to data analytics, in: 2021 Reconciling Data Analytics, Automation, Privacy,
and Security: A Big Data Challenge, RDAAPS, IEEE, 2021, pp. 1–8.

[39] M.G. Main, Detecting leftmost maximal periodicities, Discrete Appl. Math. 25 (1) (Oct. 1989) 145–153.

[40] F. Franek, W. Smyth, X. Xiao, A note on crochemore’s repetitions algorithm-a fast space-efficient approach, Nord. J. Comput. 10 (1) (2003) 21–28.

[41] M. Crochemore, C.S. Iliopoulos, M. Kubica, J. Radoszewski, W. Rytter, K. Stencel, T. Waleń, New simple efficient algorithms computing powers and runs in
strings, Discrete Appl. Math. 163 (Jan. 2014) 258–267.

[42] D. Kosolobov, Computing runs on a general alphabet, Inf. Process. Lett. 116 (3) (Mar. 2016) 241–244.

[43] R. Kolpakov, G. Kucherov, Finding maximal repetitions in a word in linear time, in: 40th Annual Symposium on Foundations of Computer Science, Cat. No.
99CB37039, IEEE Comput. Soc., New York City, NY, USA, 1999, pp. 596–604.

[44] M. Crochemore, L. Ilie, L. Tinta, The “runs” conjecture, Theor. Comput. Sci. 412 (27) (2011) 2931–2941.

[45] H. Bannai, T. I, S. Inenaga, Y. Nakashima, M. Takeda, K. Tsuruta, The “runs” theorem, SIAM J. Comput. 46 (5) (Jan. 2017) 1501–1514.

[46] R.C. Fuller, Performance comparisons of various runs algorithms, Ph.D. dissertation, McMaster University, Ontario, 2012.

[47] M.E. Newman, The structure and function of complex networks, SIAM Rev. 45 (2) (2003) 167–256.

[48] F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the brain, Psychol. Rev. 65 (6) (1958) 386–408.

[49] E. Izhikevich, Which model to use for cortical spiking neurons?, IEEE Trans. Neural Netw. 15 (5) (Sep. 2004) 1063–1070.

[50] B. Cessac, T. Viéville, On dynamics of integrate-and-fire neural networks with conductance based synapses, Front. Comput. Neurosci. 2 (Jul. 2008).

[51] B. Cessac, H. Paugam-Moisy, T. Viéville, Overview of facts and issues about neural coding by spikes, J. Physiol. (Paris) 104 (1–2) (Jan. 2010) 5–18.

[52] R. Brette, M. Rudolph, T. Carnevale, M. Hines, D. Beeman, J.M. Bower, M. Diesmann, A. Morrison, P.H. Goodman, F.C. Harris, M. Zirpe, T. Natschläger, D.
Pecevski, B. Ermentrout, M. Djurfeldt, A. Lansner, O. Rochel, T. Vieville, E. Muller, A.P. Davison, S. El Boustani, A. Destexhe, Simulation of networks of spiking
neurons: a review of tools and strategies, J. Comput. Neurosci. 23 (3) (Dec. 2007) 349–398.

[53] S. Panzeri, R.A. Ince, M.E. Diamond, C. Kayser, Reading spike timing without a clock: intrinsic decoding of spike trains, Philos. Trans. R. Soc. Lond. B, Biol. Sci.
369 (1637) (2014) 20120467.

[54] C.-C. Weng, Implementing efficient algorithms for computing runs, Ph.D. dissertation, McMaster University, Ontario, 2011.

[55] D. Gusfield, Algorithms on strings, trees, and sequences by dan gusfield [Online]. Available: /core /books /algorithms -on -strings -trees -and -sequences /
F0B095049C7E6EF5356F0A26686C20D3, May 1997.

[56] G. Chen, S.J. Puglisi, W.F. Smyth, Fast and practical algorithms for computing all the runs in a string, in: B. Ma, K. Zhang (Eds.), Combinatorial Pattern Matching,
in: Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2007, pp. 307–315.

[57] S. Puglisi, W. Smyth, M. Yusufu, Fast optimal algorithms for computing all the repeats in a string, in: Prague Stringology Conference 2008, 2008.

[58] U. Manber, G. Myers, Suffix arrays: a new method for on-line string searches, SIAM J. Comput. 22 (5) (Oct. 1993) 935–948.

[59] Y. Mori, A lightweight suffix-sorting library. Contribute to y-256/libdivsufsort development by creating an account on GitHub, Aug. 2019, original-date:
2015-03-17T15:30:25Z.

[60] J. Kärkkäinen, P. Sanders, Simple linear work suffix array construction, in: International Colloquium on Automata, Languages, and Programming, Springer,
2003, pp. 943–955.

[61] J. Ziv, A. Lempel, Compression of individual sequences via variable-rate coding, IEEE Trans. Inf. Theory 24 (5) (Sep. 1978) 530–536.

[62] M. Crochemore, L. Ilie, W.F. Smyth, A simple algorithm for computing the Lempel Ziv factorization, in: Data Compression Conference, dcc 2008, Mar. 2008,
pp. 482–488.

[63] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, Proc. IEEE 86 (11) (1998) 2278–2324.

[64] J.-J. Hong, G.-H. Chen, Efficient on-line repetition detection, Theor. Comput. Sci. 407 (1–3) (2008) 554–563.

Vivek Kurien George received his B.Sc. degrees in Electrical Engineering and Mathematics from the Florida Institute of Technology and a Ph.D. in Bioengineering
with a specialization in Computational Neuroscience from the University of California at San Diego. He is currently a Postdoctoral Fellow at the Center for Natural
and Engineered Intelligence at the University of California San Diego. His current research interests include developing artificial intelligence and machine learning
algorithms using neurobiological principles, graph theory, and combinatorics.

Arkin Gupta received his B.Sc. in Mathematics and Computer Science from University of California at San Diego. During his time at UCSD he worked at the Center
for Engineered Natural Intelligence where he focused on developing and analyzing neurobiological machine learning models. Arkin currently works as a Quantitative
Researcher for a systematic hedge fund.

Gabriel A. Silva is a Professor in the Department of Bioengineering and the Department of Neurosciences at the University of California San Diego. He holds a
Jacobs Family Scholar in Engineering Endowed Chair, is the Founding Director of the Center for Engineered Natural Intelligence, and Associate Director of the Kavli
Institute for Brain and Mind. He received an Hon.B.Sc. in Human Physiology and a B.Sc. in Biophysics from the University of Toronto, Canada, followed by an M.Sc.
in Neuroscience also from the University of Toronto. He then did his Ph.D. in Bioengineering and Neurophysiology at the University of Illinois at Chicago, followed
by a postdoctoral fellowship in the Institute for BioNanotechnology and Medicine (IBNAM) and the Department of Neurology at Northwestern University. He joined
14

the faculty at the University of California, San Diego in 2003.

http://refhub.elsevier.com/S2405-8440(23)01120-9/bibF472A65FD9B8BBCF5047A51FA870570Ds1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bibF472A65FD9B8BBCF5047A51FA870570Ds1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib23B41BCC2716077C858C77F4233BE579s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib7B03D0735C286D03D9E0D0308842D317s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bibFA49BACEA48D26245863239C6F838063s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib190E918F4389399C8D74A02BC267C8D4s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bibCC6B3DD43D9FC9347D9FB661C2CC27A8s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bibDD39C3913DD923C7EB8612EEDE7E9906s1
http://link.springer.com/10.1007/s00285-007-0117-3
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib2EE1F42AF3DB83CBA9AB037D2FDDDA30s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib7652AFE24F02B69FA469F6D36B3ABBCBs1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib92EBB3AC545E681AC5CC327548785EB4s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib92EBB3AC545E681AC5CC327548785EB4s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib452908FCFC7171D8C9BBE5D0A2CC3B72s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib0BC6074FB35DC734D9F228F8D64740D5s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bibDDA416BCFAD424E8094499E8B82EB4CBs1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bibDDA416BCFAD424E8094499E8B82EB4CBs1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib79AE44FDC0E0A74EE8B521C70B923E63s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bibB1992D622AB9DB112747717BA9704059s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bibE7DC457C3EE5321D61D90C2468918908s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib9156FB0AC29766F53084BA50939B90F0s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib818A464062F69DCDCF33FFBF99CCA60Bs1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib818A464062F69DCDCF33FFBF99CCA60Bs1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib33AE58758980A10640E907469DA24DE0s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib41163A2C2F8F0D3888E30AD928CC3081s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib0BFF19F014D69B70C8B69E74683B1858s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib0BFF19F014D69B70C8B69E74683B1858s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib3AEDB706EA2AED9CCA3EAD5FEE8136A7s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib3EB1F7D587B6BC3CDF88D671F6E629C3s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib3EB1F7D587B6BC3CDF88D671F6E629C3s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bibDD51E45A754390E0FA978F18F191FB0Es1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib0AA24FAA201AAC921DDF26B651260F76s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib7B44C4F04AFABAA619390D2B1842BF55s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib59E41B53DEC871DE04782B159D46CF9Bs1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bibF1BD867757BCF0339118AFC7BCBB4680s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib8EA7619A49B64D5C2E6E6634C553A34Cs1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib8EAEC3B02B0DF7D40463BB616BA1B35Bs1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib740EC40833A2C04B2E3C6B0062BF3E95s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bibE814B7EEBB993BEFCC0B09A249B3E62Bs1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bibE814B7EEBB993BEFCC0B09A249B3E62Bs1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bibE814B7EEBB993BEFCC0B09A249B3E62Bs1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bibDD50CA9C71F9CEE337A94D73463A503Bs1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bibDD50CA9C71F9CEE337A94D73463A503Bs1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib2E741BD219FE3AC9E7E4411A851DE5E5s1
http://core/books/algorithms-on-strings-trees-and-sequences/F0B095049C7E6EF5356F0A26686C20D3
http://core/books/algorithms-on-strings-trees-and-sequences/F0B095049C7E6EF5356F0A26686C20D3
http://refhub.elsevier.com/S2405-8440(23)01120-9/bibF15CB083CE4617E8BA875C6AB254D491s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bibF15CB083CE4617E8BA875C6AB254D491s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib6537D6726DFB84CB969F8CDEA546FBB6s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bibD72F6EEA97EB0558FF3F5316A8C8B01Bs1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bibE141063060922E66A035011A93BC382Es1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bibE141063060922E66A035011A93BC382Es1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bibE300FCC98A19F61300A6BEB0CFE69AA8s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bibE300FCC98A19F61300A6BEB0CFE69AA8s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib29A517D8A24F172E59096F87AF506F7Bs1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib77C40916E148D33C2FEF32C5E0F1A738s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bib77C40916E148D33C2FEF32C5E0F1A738s1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bibF65CCAC7F82D6D356019FF2736DF95ABs1
http://refhub.elsevier.com/S2405-8440(23)01120-9/bibAC207B2A1016B5A6DF9C118EE61567D8s1

	Identifying steady state in the network dynamics of spiking neural networks
	1 Introduction
	2 Related work
	3 Network description
	4 Symbolic description of network dynamics
	5 Defining the steady-state statistics
	6 Methods for finding network steady-state statistics
	6.1 Summation method
	6.2 String search method
	6.2.1 An example string transformation
	6.2.2 Naive string search
	6.2.3 Efficient string search

	6.3 Methodological limitations

	7 Applications
	7.1 Summation method: 1 Hz signal
	7.2 Summation method: randomized impulse train
	7.3 Summation method: non-uniformly sampled network dynamics
	7.4 String search method: non-uniformly sampled network dynamics
	7.5 Constructing spatial-temporal graph representation of network dynamics

	8 Conclusion and future work
	Funding statement
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

