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Understanding how the structural connectivity and spatial geometry of a network

constrains the dynamics it is able to support is an active and open area of research. We

simulated the plausible dynamics resulting from the knownC. elegans connectome using

a recent model and theoretical analysis that computes the dynamics of neurobiological

networks by focusing on how local interactions among connected neurons give rise

to the global dynamics in an emergent way. We studied the dynamics which resulted

from stimulating a chemosensory neuron (ASEL) in a known feeding circuit, both in

isolation and embedded in the full connectome. We show that contralateral motorneuron

activations in ventral (VB) and dorsal (DB) classes of motorneurons emerged from

the simulations, which are qualitatively similar to rhythmic motorneuron firing pattern

associated with locomotion of the worm. One interpretation of these results is that

there is an inherent—and we propose—purposeful structural wiring to the C. elegans

connectome that has evolved to serve specific behavioral functions. To study network

signaling pathways responsible for the dynamics we developed an analytic framework

that constructs Temporal Sequences (TSeq), time-ordered walks of signals on graphs.

We found that only 5% of TSeq are preserved between the isolated feeding network

relative to its embedded counterpart. The remaining 95% of signaling pathways

computed in the isolated network are not present in the embedded network. This

suggests a cautionary note for computational studies of isolated neurobiological circuits

and networks.

Keywords: connectome analysis, C. elegans model, computational modeling, graph theory, networks (circuits)

1. INTRODUCTION

A variety of network analyses methods are widely used to study complex systems (Newman, 2010;
Varshney et al., 2011; Deo, 1975; Bassett et al., 2017; Boccaletti et al., 2014, 2006; Sporns et al., 2005).
But understanding how the structural connectivity of a network constrains the dynamics it is able to
support is still an active and open area of research. This is particularly the case for spatial-temporal
networks (Holme, 2015), where much of the literature and methods are still in early stages and
mostly descriptive, providing few tools for predictive modeling. As a result, the application of this
emerging body of work toward the treatment and analyses of biological neural networks that are
inherently spatial-temporal remains quite limited. But the theoretical and practical insights that
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such an approach would offer neurobiology are potentially
very significant. One such application is the analyses of the
dynome (Kopell et al., 2014), that is, the combination of the
structural connectome and dynamic model. In this work, we
introduce a novel set of methods and analyses for this task,
and apply it to study the dynamics of the Caenorhabditis
elegans worm connectome as an example. This remains at the
forefront of neuroscience research (Bargmann andMarder, 2013;
Buonomano and Maass, 2009).

The C. elegans connectome consists of 302 neurons and
their anatomical links (White et al., 1986; Hall and Altun,
2008). Although the organism’s connectome has been known
for decades, how neurons functionally interact in the context
of the entire network and how the resultant dynamics regulates
participating neurons is not fully understood (Bargmann, 2012;
Bargmann and Marder, 2013; Larson et al., 2018). A recent tend
in C. elegans research is to study the dynome (Kopell et al., 2014;
DiLoreto et al., 2019; Towlson et al., 2018), rather than drawing
inferences from just the structural connectivity of the network
(Towlson et al., 2013; Varshney et al., 2011; Sabrin et al., 2019).

A considerable body of C. elegans research focuses on the
functional consequences of the dynome (Sabrin et al., 2019; Kato
et al., 2015; Brennan and Proekt, 2019; Moreira and de Aguiar,
2019; Szigeti et al., 2014; Yan et al., 2017; Kim et al., 2019; Sarma
et al., 2018). Experimentally and computationally researchers
have performed subnetwork and whole worm analysis (Kato
et al., 2015; Kim et al., 2019; Kaplan et al., 2018; Kunert-Graf et al.,
2017). Along the vain of current research, we propose methods
to answer the following question: How does concurrent activity
of independent neuronal elements (nodes), along axons (edges)
ultimately give rise to a rich behavioral repertoire? Our methods
are focused on an understudied topic of C. elegans research, that
is, the dynamic implications of the spatial separation of neurons.
This is stymied by experimental findings which indicate that
many C. elegans neurons do not communicate using traditional
action potentials (Lockery and Goodman, 2009; Goodman et al.,
1998; Kandel et al., 2013), with few exceptions (Mellem et al.,
2008; Shindou et al., 2019; Liu Q. et al., 2018). Several works
dedicated to studying the C. elegans dynome use biophysically
plausible node models which seek to emulate experimental
voltage responses (Kunert et al., 2014; Nicoletti et al., 2019).
Researchers performed whole worm analysis from a variety of
perspectives including probabilistic graphical models (Liu H.
et al., 2018), dynamical systems theory (Kunert-Graf et al., 2017),
and state space analysis (Linderman et al., 2019). Rather than
focusing on recreating the voltage dynamics on the connectome,
we assumed that communication between neurons is constrained
by the axonal conduction velocity, that coupled with the spatial
separation of neurons, results in edge signal delays.

We modeled the signaling dynamics in the network as the
passing some discrete quanta of charge, at finite speeds, between
neurons, along directed edged. As such, node interactions are
constrained by the network’s connectivity, spatial geometry, and
signaling parameters. This analysis is built upon a model and
framework posited by a recently published paper (Silva, 2019)
which focused on how local interactions among connected nodes
give rise to global dynamics in an emergent way. This framework

was derived from canonical principles of spatial and temporal
summation in biological neurons. The network interactions are
governed by the arrival times of incident signals into nodes and
how those signals compete to activate downstream nodes. We
used this methodology to compute the network dynamics on the
C. elegans connectome.

We constructed a geometric network by combining the
C. elegans wiring diagram–focusing on axonal connectivity–
with node location data to calculate euclidean straight-line edge
lengths (Varshney et al., 2011; White et al., 1986; Kaiser and
Hilgetag, 2006; Choe et al., 2004). We used the edge lengths and
signal conduction velocities (Niebur and Erdo, 1993) to ascertain
the edge signal delays. This is the amount of time it takes for a
signal to traverse between two connected neurons. Every node
was endowed with the same refractory period within biological
range. Finally, each node responded in either an excitatory or
inhibitory manner. In section 4.1, we describe in detail how we
constructed the Full network.

Using the aforementioned geometric network model, we
studied the dynamics which results from stimulating the
chemosensory neuron ASEL. This neuron is known to detect
the presence of food (Pierce-Shimomura et al., 2001; Suzuki
et al., 2008). Laboratory experiments have shown that the
activation of ASEL ultimately results in a movement response
(Pierce-Shimomura et al., 2001; Suzuki et al., 2008; Wang et al.,
2017). C. elegans locomotion is produced by the synchronized
activation of mid-body motor neurons (Haspel et al., 2010; Zhen
and Samuel, 2015). We chose ASEL because it is both well-
studied and because it belongs to a hypothesized subnetwork (Xu
and Deng, 2013)–the Feed network–whose dynamics we were
interested in interrogating on a standalone basis and relative to
the Full network.

We found that a geometric embedding increases the
dynamical repertoire of the network, as measured by the
number of unique network states. We quantified number of
unique network states between a spatially-aware network–one
whose edge delays are derived from node location data–and
a spatially-unaware network–one whose edge delays are all
the same. Interestingly, stimulating ASEL led to dynamics on
the spatially-aware network eventually resulted in contralateral
motor neuron activation in the ventral (VB) and dorsal (DB)
classes of motor neurons. This rhythmic alternating back-and-
forth motor neuron firing pattern is qualitatively indicative of
that required for movement of the worm (Haspel et al., 2010; Xu
and Deng, 2013; Zhen and Samuel, 2015). This result is subtle
but critical in its interpretation. It is important to realize that we
did not in any way model or intentionally try to emulate such
rhythmic oscillatory dynamics between these two motorneuron
populations. This dynamic behavior was in response to a single
impulse input into the network (via ASEL), and reflects the
inherent (and we propose) purposeful structural wiring of the
C. elegans connectome that has evolved over a very long time
to serve purposeful behavioral functions. Furthermore, the Feed
network also exhibited similar motorneuron response.

To uncover why the Feed and Full networks give rise to
similar contralateral motor activation patterns, we identified and
analyzed the signaling paths beginning at ASEL to the VB and
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DB neurons. This reflects a unique part of the work which was
enabled by the way our dynamic framework and simulation
model were constructed. Neuronal signaling paths encode the
causal chain of node activations over the course of the dynamics.
To describe each signaling path we introduced the notion of a
Temporal Sequence (TSeq). Each TSeq is a temporally ordered
sequence of nodes, formally a walk on a graph (Diestel, 2006).
We developed a method to quantitatively compare TSeqs, which
we used to determine the extent to which subnetworks (the
Feed network) preserve causal signaling paths present in the Full
network. Furthermore, we decomposed the complex network
activity into a compact basis set of TSeqs. This set plays two roles,
it can be used a signature of the network dynamics, and it can be
used to construct subnetworks which more closely resemble the
signaling dynamics of the larger network. Finally, upon analysis
of the TSeqs responsible for VB and DB activity, we showed the
prevalence of different classes of neurons from the motor circuit.

The focus of this paper is to show that a combination of
a geometric network, signaling framework, and TSeqs—when
applied to analyze the affects of stimulating ASEL—resulted
in some surprising findings. In addition, the computational
workflow we developed can be used to generate experimentally
testable hypothesis regarding concurrent network activity.
Moreover, TSeqs can be used to generate a set of candidate
subnetworks for more computationally intensive and detailed
studies. Outside neuroscience, we are using these methods to
analyze the causal dynamics on complex networks for machine
learning. For example, in image classification setting, we can
encode images through causal network dynamics in the from
of TSeqs. Thus, the methods we developed extend beyond
computational neurobiology and are useful in any network
context where causal interactions can be delineated.

2. RESULTS

2.1. The Contribution of Network Geometry
on Dynamics
We found that a geometric embedding of nodes in the network
plays an important role in network dynamics (Silva, 2019; Buibas
and Silva, 2010). A signal’s finite conduction velocity and a
network’s physical geometry, i.e., convoluted paths in space,
results in edge signal delays which adds significant richness to
the resultant network dynamics. This is due to the offset in signal
arrival times at nodes and the subsequent effects that has. Within
the context of our model, we quantified the affect of signal delays
on network dynamics in C. elegans.

We compared the network activity of the spatially embedded
C. elegans connectome (Figure 1A), henceforth referred to as
the Full network (its construction is described in section 4.1), to
the activity resulting from a C. elegans connectome whose nodes
are arranged in a spatial lattice, this network is referred to as
the Lattice network (its construction is described in section 4.3).
While the Lattice network’s edge connectivity and node types
(inhibitory or excitatory) are identical to the Full network, we set
all the Lattice network’s edge signal delays to a constant value; this
then eliminates the effects of spatial embedding on the dynamics.

In Figures 1B,C, we show the network activity of the Full and
Lattice networks, that results from a single pulse stimulus at the
ASEL neuron. This effectively represents the simplest stimulus
and input into the network that is possible within the singling
framework. We observed that the Lattice network’s activity went
through a transient period of node activity, but over time, all
possibly activated nodes were firing at the same time, in a periodic
manner (Figure 1B). In contrast, although the Full network’s
node activity also went through transient and periodic phases,
we observed a greater number and variability of patterns in its
network states (Figure 1C). To quantify the affect on network
activity due to network geometry, we counted the number of
unique network states exhibited by each network. We describe
the network’s state through a vector of nodal states at each
simulation time point. Concretely, if the state of node i at time
t is given by yi(t) = {0, 1}, then the state of a network, with N
nodes, at time t, can be written as y(t) = {0, 1}N . In Figure 1D,
we show the cumulative count of unique network states over the
course of the simulation. The Lattice network assumed 12 unique
states, while the Full network assumed 280 unique states across
the sample time points (we did not consider permutations of
consecutive states).

These results suggest that the geometry is an important
consideration because of it increases dynamic range of the
network. The spatial network embedding gave rise to seemingly
coherent patterns of temporal network activity (Figure 1B).
In what follows, we qualitatively and quantitatively study this
network activity in the context of various networks.

2.2. Qualitative Comparison of Network
Activity Between the Full and Feed
Networks Using Temporal Sequences
The behavioral consequence of the activation of the ASEL neuron
is movement (Xu and Deng, 2013; Suzuki et al., 2008; Wang
et al., 2017). This is achieved by synchronized contralateral
periodic firing in alternating populations of motorneurons
(Haspel et al., 2010; Zhen and Samuel, 2015). To do comparisons
of network activity, we used a previously delineated subnetwork
(Xu and Deng, 2013) that contain nodes which transduces a food
stimuli—through ASEL activation—to a movement response,
which is indicated by the activity of the VB and DB populations
of motorneurons. As such, to compare node activity across
networks various networks, we focus on the neural activity of VB
and DB motorneuron populations which are present in both the
Full network and the Feed network. The construction of the Feed
network detailed in section 4.2.

In Figures 2A,C, we show the time-binned histogram of VB
and DB motorneuron activity which results from stimulating
ASEL in the Feed and Full networks, respectively. We observed
that the VB and DB motorneurons activated in a staggered
back and forth synchronized contralateral periodic manner. This
activity pattern is qualitatively similar to the contralateral firing
patterns necessary for the locomotion of the worm (Zhen and
Samuel, 2015; Haspel et al., 2010; Riddle et al., 1997). Both the
Full and the Feed networks preserved the general patterns of
ventral and dorsal neuronal activity.
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FIGURE 1 | (A) A reconstruction of the C. elegans connectome. Each gray line represents an edge. Each edge represents chemical connections between nodes. The

colored dashed lines represents a sample of the traversal of a signal from the sensory neuron ASEL through the interneurons in the network to the VB and DB classes

of motorneurons. The color gradient indicates the time course as the signal traverses the network. Cold colors represent early in the neuronal signaling pathway and

warm colors represent late in the neuronal signaling pathway. The node labels and numbers next to them represent the names of the motorneurons at the terminus of

the sequence of activations and the time step when that terminal node was activated. (B) The Full network’s spike raster resulting from ASEL stimulation. The activity

is a direct result of the signaling parameters (signal conduction velocity, refractory period), network connectivity, and the spatial locations of each of the nodes. Each

dot represents the activation of a node in the network, the white space represents an inactive state of the node. Each discrete height on y-axis represents a specific

node in the network. (C) The Lattice network’s spike raster caused by stimulating ASEL. The Lattice network preserves the signaling parameters and network

connectivity, but has modified spatial node locations relative to the Full network. We set the delays for all edges in the Lattice network to be the same. The resulting

spike raster is significantly less varied than that of the Full network. (D) Each curve is a cumulative count of the number of unique network states of presented by the

Full (red curve) and Lattice (blue curve) networks as the dynamics proceeds over time. There are approximately a 20 times more network states in the dynamics of the

Full network than dynamics of the Lattice network.

To qualitatively show that the network’s activity is affected
by edge connectivity, we constructed randomized networks—
called the Gilbert Randomized networks—derived from the Feed
and Full networks, then simulated dynamics on each of them.
The Gilbert Randomized networks were constructed using a
randomization procedure (Gilbert, 1959; Erdos and Renyi, 1960)
which preserved each node’s spatial location, but replaced the
original set of edges with a new set, which is a randomly drawn
subset of the allowed edges between nodes (a detailed description
of its network construction can be found in section 4.5). Despite
the edge randomization, stimulating the ASEL in the Gilbert
Randomized networks still led to VB and DB population activity
(Figures 2B,D). Furthermore, the motorneuron populations in
the Gilbert Randomized networks always settled into periodic
activity patterns. However, unlike the Feed and Full Networks,
coordinated and synchronized contralateral alternating firing
patterns of motorneurons were decimated. This empirically
emphasizes the putative intentional design of the underlying

wiring of the C. elegans connectome toward achieving an
important behavioral function. The structural connectivity of the
connectome is not random, but has likely evolved in a purposeful
way to subserve specific purposes.

To understand how a single pulse stimulation of the ASEL
neuron resulted in the firing patterns of the VB and DB classes
in Figure 2, we decomposed the network activity into TSeqs
(defined in section 4.7). A TSeq represents the causal nodal
interactions between a set of start nodes and a set of end nodes.
Each TSeq is a walk, of an individual signal, on the graph from
start node to end node. TSeqs capture the signaling pathways
of the network, as such, they chart the course of a stimulus or
any signal through the connectome. Only a subset of all possible
walks on a graph are realizable at any given time. Signal walks
are constrained by network parameters, such as, edge delays,
node refractory periods, and concurrent network activity. We
focused on the TSeqs which start at the ASEL neuron, and either
terminate or traverse motorneurons from the VB or DB classes.
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FIGURE 2 | Histograms of the number of firings of nodes from the VB (orange rectangles) and DB (blue rectangles) classes. The bin size of the histogram is 250 time

steps. (A) Histogram of the Feed network’s VB and DB class motorneurons activations. We observe that the VB and DB classes of motorneurons activate in an

alternating pattern. (B) Histogram of the Gilbert Randomized Feed network’s VB and DB class neurons activations. Because the randomization procedure significantly

modified the network connectivity, the class based alternating neuronal activation pattern was decimated. We observe a semblance of periodic node activations from

the VB and DB classes after approximately 3000 time steps. (C) Histogram of the Full network’s VB and DB class neurons activations. The C. elegans connectome

gives rise to significantly more activity in the VB and DB classes of motorneurons in comparison to the activity in the Feed network (A). The dynamics on the Full

network also supported alternating VB, DB class activity. Because of the density of node activation, in the inset we show a zoomed in view of a sub-interval of activity

to better view the VB-DB class alternating neuronal activation pattern. (D) Histogram of the Gilbert Randomized Full network’s VB and DB class neurons activations.

The randomization procedure resulted in the destruction of the class-wise alternating neuronal activation pattern.

The set of TSeqs contain the relevant neuronal signaling paths
(NSPs) which we use to compare dynamics between the Feed and
Full networks.

To visualize the evolution of TSeqs over time, we created a
TSeq plot (defined in section 4.8). In Figure 3, we show the TSeqs
ascertained from the different networks we considered. The TSeq
plot is similar to a raster plot, where the abscissa is time, and
the ordinate is node number. Each curve in the TSeq plots traces
the causal walk of a signal on the structural connectome leading
to the activation of a neuron of interest. The locations of the

motorneurons (end nodes) on the TSeq plot are indicated by
the dark blue horizontal lines. All the curves that are active in
a time interval trace the concurrent neuronal signaling pathways,
which lead to subsequent activations neurons from the classes of
interest. To reduce the visual clutter in the TSeq plot we do not
explicitly mark the nodes on the walk. The activated nodes are
generally located at notches along the curve.

As anticipated, based upon observation of the histogram
of node activity in the randomized network (Figures 2B,D),
the TSeq plots of the randomized networks show a complete
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FIGURE 3 | TSeq plots. All TSeqs from ASEL to the VB and DB classes. (A) TSeq plot of Feed network. The activation patterns of neurons in the VB and DB classes

are synchronized and staggered eventually giving rise to periodic sequences of node activity. (B) TSeqs of the Gilbert Randomized Feed network. Synchronized and

staggered activations from the VB and DB class are absent. Transient period of network activity is longer than in (A). The TSeqs eventually enter a periodic sequences

of node activity. There were significantly more TSeqs resulting from the randomized network in comparison to the TSeqs from the Feed network as in (A). (C) The

number of TSeqs resulting for stimulating ASEL in the Full network were significantly more than those from the Feed network. Furthermore, the number of

motorneurons were activated at a faster rate than they were in the Feed network. This indicates that there are many other signaling pathways or more active signaling

pathways from ASEL to the VB and DB classes of motorneurons which are either not captured or not as quickly activated by the Feed network. Qualitatively, the

TSeqs of the Full network enter periodic activity within the first 1,000 simulation time steps. (D) TSeqs from Gilbert Randomized Full network. The TSeq displayed a

significantly longer transient period before the network activity entered a periodic regime. The transient period lasted approximately for the first 2,000 steps of network

activity.

breakdown of NSPs (Figures 3B,D) relative to TSeqs from
the Full and Feed networks (Figures 3A,C). Another
notable qualitative difference between the TSeqs of the
edge randomized and original networks is that the TSeqs
of the Full and Feed networks enter a periodic regime of
activity significantly sooner. Additionally, the TSeqs in the
randomized network displayed convoluted neuronal signaling
pathways relative to the orderliness of signaling pathways
of the non-randomized networks. Although the histograms
of node activations showed a similar trend in class-wise
VB and DB motorneuron activations (Figures 2A,C), the
TSeq plots show that the NSPs in the Full Network are
markedly different (Figures 3A,C). We were motivated
by this observation to develop a quantitative approach to
compare TSeqs.

2.3. Quantitative Comparison of Temporal
Sequences
To quantitatively compare TSeqs we developed the Temporal
Sequence-Similarity Measure (TSeq-SM). Before presenting the
results, first introduce the TSeq-SM algorithm, next we describe
a set of networks for which we computed TSeqs, and finally, we
discuss the TSeq-SM results.

2.3.1. Similarity Measure Definition
The TSeq-SM is used to quantitatively determine the similarity
between any two sets of TSeqs. Sets of TSeqs can be derived from
the same network or from different networks. Of the two sets of
TSeqs being compared by the TSeq-SM, one of the sets must be
a user defined reference set. The TSeq-SM is calculated relative
to the length of each TSeq from the reference set. We count the
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number of TSeqs meeting some matching criteria α, where α is
the percent of the length of one sequence from the reference set
matching a sequence from the other set. The TSeq-SM is similar
to graph edit distances (Sankoff and Kruskal, 1983), but is applied
to an ensemble of walks.

Let’s say we wish to calculate TSeq-SM between networks X
and Y , where X is the reference. The inputs to the algorithms
are (X,Y ,α). The output of this algorithms is the TSeq-SM value.
The sets X and Y contain the TSeqs from networks X and Y

respectively, and α is a scalar whose value is between [0, 1]. Let the
ith TSeq of X be denoted xi, and the jth TSeq of Y be denoted yj,
both xi and yj contain some number of node labels, each sequence
of node labels representing a sequence of causal activations. Each
comparison of the TSeq is relative to a threshold α which is a
percentage of total elements in a particular xi which in-order
match the sequence yj (getTSSimilarityMeasure is defined in
Algorithm 1). For each x ∈ X we evaluate (1) for every y ∈ Y :

getTSSimilarityMeasure(xi, yj) ≥ α (1)

The output of (1) is either True or False. When (1) is True, a
counter, cα , is incremented, and the next TSeq from X, xi+1 is
checked against all y ∈ Y . The final value of the counter, cα , is
number of TSeqs from X which met the criteria α relative to the
TSeqs from Y . For example, if 4 out of 5 node activations in some
xi found an in-order match to some yj, and 4 out of 5 was the best
match with respect to all y ∈ Y , then we say xi meets the α = 0.8
criteria, and the counter c0.8 is incremented by 1. In Algorithm 1,
we show the procedure to calculate TSeq-SM.

2.3.2. Description of Networks Considered for

Similarity Measure
We computed the TSeq-SM between 9 networks, each with
varying degrees of similarity to the Full network. All networks
were derived from the Full network. Here we briefly describe
some of them.

As mentioned in section 2.2, the Feed network is a subset
of the Full network. In addition to the previously described
Feed and Full Gilbert Randomized networks, we derived two
more random networks using an Edge-Swap randomization
scheme (described in section 4.4). The two edge randomization
procedures resulted in varying degrees of edge reorganization,
while maintaining the number of nodes and node locations.

Of the two randomization procedures, the Edge-Swap
randomized network is a less drastic network reorganization
because the network generation scheme prescribes that each
existing edge swap their terminal node with some probability.
This procedure is repeated for some number of iterations.
Therefore, not all edges need actually be different from
the derived network. In addition, the Edge-Swap Random
network preserves network parameters, such as, out-degree and
network connectedness. The number of iterations determines
the structural deviation from the original network. In contrast,
the only constraint for the Gilbert based randomization is to
maintain approximately the same number of edges between the
original and the randomized networks. Therefore, the Gilbert

based edge randomization (Gilbert, 1959) is a more drastic form
of network reorganization.

Finally, we constructed the Embedded Random Feed
networks (detailed description in section 4.6). These network
preserves the edge connections of the Full network outside
of the Feed subnetwork. The subnetwork within the Full
network uses the same randomized edge connection profile
as each of the standalone randomized Feed networks. Two
Embedded Random Feed networks are generated, one based on
the Gilbert Random Feed network and the other based on the
Edge-Swap Random Feed network.

2.3.3. Similarity Measure Results
The results of the TSeq-SM are presented in Table 1. First,
We will describe the organization of the table, next the results
themselves. The reference networks for each TSeq-SM are the
antecedents in each of the column headings in the table. The top-
half of Table 1 contains the TSeq-SM results of the Gilbert based
randomization, and the bottom-half of the table contains the
TSeq-SM results of the edge-swap based randomization. Stimulus
was applied at the ASEL sensory neuron in all the networks, and
the TSeqs of interest were all those which traversed the VB and
DB sets of motorneurons.

Most generally, as the α-criteria increased, the number of
TSeqs meeting the α-criteria decreased. This is an expected result
because deviation from the original network structure causes
deviation in TSeqs, given that the rest of the signaling parameters
are constant. Therefore, fewer TSeqs from more structurally
different networks will meet higher α values.

The TSeq-SM between the reference Feed network and the
Full network was greater than the TSeq-SM between each of
them and their edge randomized counterparts. This is because
the Feed network was more directly derived from the Full
network. Next, comparing the TSeq-SM between the two forms
of network randomization the TSeq-SM values of the reference
Full/Feed networks and their Edge-Swap Randomized networks
were higher than the TSeq-SM values of the Full/Feed networks
and their Gilbert Randomized counterparts.

Surprisingly, although the Feed network is a subset of the
Full network, the Feed network in isolation only completely
preserved 6 out of 124 TSeqs, i.e., α = 1 that is a 100% match,
the remaining 118 TSeqs followed different neuronal pathways.
Ideally, the dynamics of the Feed network should be a subset
of the dynamics of the Full network. A natural question which
arises is: Can we build a better subnetwork? As a starting point,
contained in the 697 TSeqs is the necessary set of nodes required
to construct a subnetwork. The sufficient set of nodes are those
additional nodes involved in the neuronal signaling pathways
of the concurrent network activity which ensures the existence
of the 697 patterns. Determining the sufficient set of nodes is
out of the scope of this paper because that requires iterative
simulation and TSeq-SM measurements.

Given the relatively poor TSeq-SM between the Feed and Full
networks, we sought to quantify the neuronal signal paths in the
Full network traversing nodes outside the Feed network which
link ASEL to the VB andDB classes of neurons. There are possible
several approaches to generate an intermediate network which
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TABLE 1 | Table of similarity measures.

Gilbert rand based network

Percent match Feed (124) vs.

Feed rand (598)

Feed (124) vs.

Full (697)

Feed (124) vs.

Embedded rand

feed (649)

Full (697) vs.

Embedded rand

feed (649)

Full (697) vs. Full

rand (665)

0.00% 124 124 124 697 697

25.00% 9 78 9 576 10

50.00% 0 33 0 36 1

75.00% 0 13 0 3 0

100.00% 0 6 0 1 0

Edge-Swapped network

Percent match Feed (124) vs.

Feed rand (130)

Feed (124) vs. Full

(697)

Feed (124) vs.

Embedded rand

feed (674)

Full (697) vs.

Embedded rand

feed (674)

Full (697) vs. Full

rand (643)

0.00% 124 124 124 697 697

25.00% 50 78 9 688 16

50.00% 6 33 0 614 2

75.00% 3 13 0 422 0

100.00% 1 6 0 0 0

The columns contain the pairs of networks compared. The rows in the leftmost column of the table represent the percent of a TSeq (the matching criteria α in section 2.3.1) which

matched any of the TSeqs from the reference network. The heading for each column are organized as reference network vs. target network. The cells in the table represent the number

of TSeqs of the reference network which found a match TSeq from the target network meeting the corresponding row’s matching criteria.

bridges the dynamical regime between the isolated Feed network
and the Full network. One approach is to remove all the nodes
and edges of the Feed network from the Full network, except
those nodes associated with ASEL, VB, and DB. If we were to
remove all the nodes of the Feed network from the Full network
certainly we would find TSeqs which lie completely outside the
Feed network. But removing all the nodes and edges associated
with the Feed network from the Full network can drastically
affect the overall dynamics of the network due to the absence
concurrent dynamics. To workaround this issue, we used the
Embedded Random Feed network.

Relative to the TSeq-SM values resulting from the comparison
of the isolated Feed network (vs. Full network), we observed
higher TSeq-SM values while comparing the reference Full
network and the Embedded Random Feed networks (Table 1, 5th
column). Although we found no TSeqs met the α = 1% criteria,
across α values the Embedded Random Feed networks better
preserved TSeqs than the reference isolated Feed network relative
to the Full network.

Although these results paint a cautionary tale for the analysis
of isolated subnetworks. Our quantitative approach of comparing
network dynamics provides an indicator of a subnetwork’s
efficacy. Further analysis of TSeqs provides an avenue for
generating subnetworks, as well as preserving specific network
interaction patterns.

2.4. Decomposing Temporal Sequences
Into Basis Sequences
We decomposed the complex patterns of network activity into a
basis set of TSeqs (basis set construction is described in section
4.9). In brief, a basis set of TSeqs is a set of composed of
TSeqs which arise from signals performing one-time walks and

repeating walks on the graph. A repeating walk exist by virtue
of signals traversing cycles of the graph. Each of the TSeqs from
the set of repeated TSeqs contain sub-sequences which repeat
some number of times. We can recompose all TSeqs from the
set of One-Time walks and Repeating walks (given the repeating
sub-sequences and their repetitions).

To ascertain the basis set of TSeqs, we categorized each TSeq
into One-Time Temporal Sequences, and Repeating Temporal
Sequences. Of the 697 observed TSeqs from the Full network,
the basis set contained 50 One-Time TSeqs, and 20 Repeating
TSeqs. In Figures 4A,B we show the TSeq plot of One-Time and
Repeating TSeqs respectively.While the entirety of the One-Time
Sequences are displayed in the figure, we only show the Repeating
TSeq with a minimum of their repeating sub-sequences.

Each of the 50 One-Time TSeqs are unique because they did
not match any of remaining 696 TSeqs (not counting the TSeq
being compared). Since there were 50 unique TSeqs, out of 697
total TSeqs, the 20 Repeating TSeqs compose the remaining 647
observed TSeqs through some sub-sequence repetition. Together
the One-Time and Repeating TSeq form the minimal description
of the dynamics and can be used as for further analysis and
network construction.

2.5. Interacting Motorneuron Classes
Forward and backward movement of C. elegans results from the
synchronized activations of banks of motorneurons (Haspel et al.,
2010) along its body. The cause of this synchronized activity
involves the interaction of several classes of neurons (Chalfie
et al., 1985; Zhen and Samuel, 2015). We analyzed TSeqs to
identify the interaction between the various classes of mid-body
motorneurons. We focused on TSeqs which started at the ASEL
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FIGURE 4 | TSeq plots of the basis set of TSeqs from the Full network. The basis set contains One-Time TSeqs and Repeating TSeqs. One-time TSeqs contain

TSeqs which represent transient node activity on the network, and the Repeating TSeqs contain TSeqs which represent steady-state or repeating node activity on the

network. (A) TSeq plot of Repeating TSeqs. These TSeqs contain sub-sequences that when repeated some number of times, that Repeating TSeq is an exact match

for another TSeq captured over the course of the network dynamics. (B) TSeq plot of One-Time TSeqs. These TSeqs are unique neuronal signaling paths present in

the dynamics.

neuron, and traversed the mid-body motorneurons from the DA,
DD, DB, VA, VD, and VB classes.

To determine the prevalence of various neuronal classes in
neuronal signaling paths, we counted the number of TSeqs which
contained multiple motorneuron classes. As a starting point,
in Figure 5A, we show the number of TSeqs which contain
neurons from individual classes. All of the classes implicated
in movement were present in at least some of the TSeqs
(Figure 5A). Interestingly, the ventral side neuronal classes had
significantly more TSeqs traverse their neurons than the dorsal
side neuronal classes.

Although the order of classes along the signaling pathways
are relevant, they were not considered in this work because of
the size of the permutation space. In Figures 5B–D, we show
the results for the number of TSeqs with 2, 3, and 4 neuronal
classes present. Generally, as the number of classes present in
a TSeq increased, the number of TSeqs traversing those classes
decreased. Interestingly, individual TSeqs contained at most 4
interacting neuronal classes out of the possible 6 neuronal classes.
As such, we find that signaling dynamics on the structural
connectome limited the neuronal signaling paths to 4 classes of
neurons in the motor circuit and no more.

3. CONCLUDING REMARKS

As a first attempt to study the affects of a geometric
embedding on the dynamics supported by the C. elegans
connectome, we intentionally focused on the simplest node
model applicable within the used signaling framework (Silva,
2019). Although our results indicate that there is value in
our approach, laboratory experiments have established that

many C. elegans neurons may not communicate using discrete
signaling dynamics, but rather through graded isopotential
dynamics. This is a source of difference between the node
models and signaling framework we used, and biophysical
models used in other works. None the less, C. elegans
neurons are physically separated in space and their membrane
morphology constrains their neuronal signal propagation
velocity, thereby, inducing edge signal delays. A future line
of inquiry should be the study of the affects of a geometric
embedding on the dynome using more sophisticated node
models which bridge the gap between models used here and
biophysical models.

Several works have observed that C. elegans displays low-
dimensional neural activity (Kato et al., 2015; Linderman
et al., 2019; Kunert et al., 2014). Similar low-dimensional
behavior of node activity would not be expected between the
time series of the Full network’s motorneuron activity, and
time series of the isopotential neuron’s voltage dynamics. But
through the decomposition of TSeqs into Basis Sequences, we
ascertained a low-dimensional representation of the dynamics
in the sense of TSeqs. As noted in the results, only 20
Repeating TSeqs gave rise to the observed 647 TSeqs and
from the TSeq plots we can see that many of those sequences
share significant sub-sequences. As such, we qualitatively
observed that the signaling on the geometric network also
displays low-dimensionality.

Researchers have not resolved the exact mechanisms of
oscillatory dynamics on arises from the C. elegans connectome
(Gjorgjieva et al., 2014) to sustain locomotion, but there are
several hypothesis (Wen et al., 2018; Kunert-Graf et al., 2017;
Olivares et al., 2018; Wen et al., 2012) that not only involve the
connectome, but also proprioceptive coupling of cells. Although
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FIGURE 5 | The interaction of various mid-body motorneuronal classes implicated in movement response upon stimulating ASEL in the context of the Full network.

We expand the motorneuron classes under consideration to include the DA, DD, DB, VA, VD, and VB classes. We color code the dorsal side classes in blue and the

ventral size classes in green. To elucidate the classes implicated in individual TSeqs, as a result of ASEL stimulation, we counted the number of TSeqs which

contained at least 1, 2, 3, and 4 classes out of the 6 total classes under consideration. We only show 4 panels because there were no TSeqs which contained 5 or

more classes in them. We do not consider the order of present classes because of the much bigger combinatorial space to visualize. (A) The values in each of boxes

indicate the number of TSeqs with the specific neuronal class present within the TSeq. For example, looking at the box labeled DA, at least one of the neurons in the

DA class was present in 325 TSeqs. The ventral classes were over-represented in TSeqs with single classes present. (B) Here we considered the presence of any two

classes of motorneurons in individual TSeqs. The number of sequences are given by the circles. The most prevalent two classes present were neurons from the

VA-VB classes. Only the DB-DD class interaction was not observed in any of the TSeqs captured. (C) Here, we considered three class interactions. Here we observe

significantly fewer TSeqs than in (B). (D) There are significantly fewer TSeqs meeting the four present classes criteria.

we observed rhythmic behavior of the VB and DB populations
of motorneuorns, one must be careful in overgeneralizing from
the observations. Since we model the network as a geometric
graph, all cycles in the graph are candidate oscillatory circuits.
Additionally, we did not introduce any mechanisms for signal
degradation, that is how a single impulse stimulus at ASEL
resulted in oscillatory dynamics through the realized cycles.
Therefore, within the context of our model, a cycle’s realization
over the course of the dynamics is constrained by signaling
parameters and concurrent network activity. These assumptions
make any detailed hypothesis of specific signaling paths out-of-
scope. Using the idea of the optimal refraction ratio from (Silva,
2019), the range of signaling parameters which induce oscillatory
dynamics can be further studied. Future work which uses more
granular signaling parameters and/or more sophisticated node
models can be in a position to propose oscillatory circuits based
on the simulated dynamics on a geometric network.

Several works have focused on detailed subnetwork and whole
worm analysis (Kato et al., 2015; Brennan and Proekt, 2019;
Kaplan et al., 2018; Wen et al., 2018; Olivares et al., 2018; Kunert
et al., 2017). Along the lines of other work (Liu H. et al., 2018),
a comprehensive characterization of the dynamics on the C.
elegans connectome using our signaling framework and methods
is needed. Furthermore, the stability and sensitivity of network
dynamics to variations in initial conditions, small perturbations,
and various stimuli are all interesting research directions, some
of these have been pursued in the non-geometric setting (Kunert-
Graf et al., 2017).

TSeq based network analysis can be generalized to other
scientific disciplines where a network abstraction is possible
and causal signaling dynamics can be discerned. In addition to
constructing TSeqs, more complex mathematical structures can
be built to gain better insights into the structure of network
dynamics. TSeqs can easily be extended into graphs and other
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Algorithm 1 Similarity Measure Algorithm

1: procedure GETSIMILARITYMEASURE(X,Y ,α)
2: for xi ← 1, |X| do
3: maxPercentMatch← 0
4: percentMatch← 0
5: for yj ← 1, |Y| do
6: percentMatch← getTSSimilarityMeasure(xi, yj)
7: ifmaxPercentMatch < percentMatch then
8: maxPercentMatch← percentMatch
9: ifmaxPercentMatch ≥ α then

10: count← count + 1
11: thresholdMet← 1
12: break

13: end if

14: end if

15: end for

16: end for

17: return count
18: end procedure

19: procedure GETTSSIMILARITYMEASURE(xi, yj)
20: Sequences xi and yj
21: ⊲ Compares the similarity of Temporal
22: cardx← |xi| ⊲ Store the number of elements in xi
23: cardy← |yj| ⊲ Store the number of elements in yj
24: lasty← 1
25: count← 0
26: for u← 1, cardx do ⊲We sweep through

all the elements of the TSeq xi looking for in-order matches
of elements in xi

27: for w← lasty, cardy do
28: if xi[u] = yj[w] then
29: count← count + 1
30: lasty← yj[w]
31: else

32: continue ⊲ Go to the next iteraction of w
for-loop

33: end if

34: end for

35: end for

36: PercentMatch = count/cardx
37: return PercentMatch
38: end procedure

topological structures (Milo et al., 2002; Alon, 2007; Wong et al.,
2012; Curto, 2016). Each of these abstractions provide insights at
various temporal and spatial scales.

4. METHODS

4.1. Full Network Construction
Our computational model builds upon the experimentally
derived C. elegans connectome (White et al., 1986). We call
the network model of the entire structural connectome the Full
network. All other networks in this work are derived from the

Full network. Mathematically, we treat the connectome as a
directed geometric graph (Diestel, 2006; Silva, 2019). A graph G
is a pair G = (V ,E). Where V is the set of nodes/neurons, and
E is the set of edges/axons such that E ⊆ V × V . A geometric
graph is a graph whose nodes are embedded in euclidean space.
A network is an applied instance of a graph, in our case
a biological neuronal network, the C. elegans connectome. A
directed network representation was used because signals along
axons generally travel unidirectionally (Kandel et al., 2013). We
used a simplified version of the Geometric Dynamic Perceptron
model to describe the dynamics of each node (Silva, 2019).

We constructed the directed adjacency matrix of the Full
network using publicly available connectivity information (White
et al., 1986; Altun et al., 2002–2017; Kaiser and Hilgetag,
2006; Varshney et al., 2011). Let A be the network adjacency
matrix, if there is a connection between neuron i and neuron
j, then Aij = 1, otherwise Aij = 0. Although neurons
communicate with each other through multiple modes, our
model only incorporates chemical/axonal connections between
neurons. We do not consider electrical connections through
gap junctions. Combining the structural connectivity with the
location of neuronal cell bodies (Choe et al., 2004) we constructed
the distance adjacency matrix. Out of the 302 neurons which
make up the hermaphrodite C. elegans connectome, only 277
neuron locations are known (Choe et al., 2004). Therefore, our
final network consists of 277 nodes.We calculated the edge length
using a euclidean distance between somatic bodies.

Although, there is much debate as to whether C. elegans
neurons use action potential like signaling, for simplicity, we
assumed that some quanta of charge is transmitted between
nodes through all-or-none stereotyped nodal events (Mellem
et al., 2008, 2009; Lockery and Goodman, 2009; Lockery et al.,
2009). Once a node initiates a signal, the signal traverses all
outgoing edges at a constant conduction velocity. We assumed
a conduction velocity of 80mm

s which is within the theoretical
range for this type of organism (Niebur and Erdo, 1993). We
calculated the signaling time delays along edges through the
geometrically derived edge lengths and the conduction velocity.

All nodes in our network model are either inhibitory or
excitatory. Excitatory nodes propagate excitatory signals through
their edges. The response to an incoming excitatory signal is
either the activation of the node receiving that signal, or the
addition of potential to the receiving node’s membrane potential.
If the receiving node’s membrane potential has exceeds threshold,
the node generates signals which propagate along all outgoing
edges, immediately the node becomes refractory for the duration
of its refractory period. The response to an incoming inhibitory
signal is similar except no outgoing signals are generated by
the receiving node. Only the GABA expressing neurons were
considered inhibitory (Gendrel et al., 2016). All other neurons
types were considered excitatory (Pereira et al., 2015), including
the unknown neuron types. While a receiving node is refractory,
no incoming signals will contribute to its firing. The refractory
period of all neurons is set to 4ms (Berry andMeister, 1998; Mack
et al., 2013).

In our simplified version of the Geometric Dynamic
Perceptron node model, the state of node i at time t be given by
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yi(t) = {0, 1}. When the node is in the active state y(t) = 1,
when it is inactive y(t) = 0. While node i is initially in an inactive
state it can instantly transition to the active state; but when the
node i is in the active state it will become refractory for the time
interval of the refractory period. We set the threshold for node
activation to be one incoming signal. Therefore, when a signal
arrives to the axon hillock of node i and it is in the inactive
state, instantaneously, an outgoing signal will be generated and
transmitted through all its outgoing edges.

We initialize network activity to quiescence. We initiate
network activity by stimulating the ASEL neuron with a single
pulse stimulus, eliciting outgoing signals based on the network
connectivity. The simulation is run for approximately 0.15s of
network activity, broken up into 6000 discrete time steps.

4.2. Feed Network Construction
The Feed network (Xu and Deng, 2013) is a hypothesized
network which contains the neurons governing movement
response to a feed stimulus. The Feed network is subset of the Full
network. The Feed network contains the chemosensory neuron
ASEL, interneurons, and motorneurons. We reused the physical
parameters from the Full network for the Feed network.

4.3. Lattice Network Construction
We constructed the Lattice network to study the affect of edge
lengths on dynamics. The Lattice network is derived from the Full
network. While we used the adjacency matrix of the Full network
in the Lattice network, we modified the signaling parameters of
the Lattice network. Specifically, we set all edge delays of the
Lattice network to 1tu (arbitrary time unit) and we set all node
refractory periods to 0.9tu. This ratio of refractory period to
signaling delay is considered to approach optimal from a local
signaling perspective (Silva, 2019).

4.4. Edge-Swap Random Network
Construction
We constructed a random network called the Edge-Swap
Random network using the edge-swapping algorithm from
Rubinov and Sporns (2010). The the randomization procedure
incrementally modifies the original network’s connectivity. We
briefly describe the randomization procedure.

Two edges are randomly selected. If the two edges have two
distinct source nodes and two distinct destination nodes, then the
two destination nodes are swapped, only if the new edges formed
by the swap do not already exist. If any of the nodes associated
with the randomly selected edges are the same, then two other
edges are randomly selected, and the procedure is repeated.
When an edge is successfully modified, a network connectedness
check is performed to make sure a separate network component
was not created during the edge-swapping process. The process
is repeated approximately as many times as the number of edges
in the network. Each cycle through all the edges is consider an
iteration of the algorithm. The original and randomized networks
diverge in connectivity as an increasing function of the number
of iterations. The code for the edge-swapping algorithm can be
found at Rubinov and Sporns (2010).

We ran the algorithm for 10 iterations on both the Full
network and the Feed network, to generate their randomized

counterparts. This randomization scheme preserves the node
degree distribution, the number of edges, and network
connectedness. Finally, we computed the distance adjacency
matrix from the adjacency matrix of the last iteration of
the algorithm.

4.5. Gilbert Randomized Network
Construction
The Gilbert Randomized network (Gilbert, 1959; Erdos and
Renyi, 1960; Prettejohn et al., 2011) is derived from the Feed
and Full networks. The Gilbert random networks approximately
preserved the total number of edges in the Feed and Full
networks, but the edge between nodes is randomly drawn from
the set of all possible edges between any of the nodes in the
network. We calculated the probability of edge connection as
follows: Let N be the number of nodes in the Full network, and
let e be the number of edges in the Full network.

p =
e

N(N − 1)
(2)

To create this network’s adjacency matrix, we created a matrix of
random real numbers between 0 and 1. Each value in thematrix is
determined by using p as the threshold value. If the matrix entry
is greater than p, then we set the values of the matrix entry to 0,
otherwise, the matrix entry is set to 1. This results in an adjacency
matrix of 0s and 1s with approximately the same number of edges
in the Gilbert Randomized network as in the Full network. Using
the spatial location data for the neurons, we calculated a distance
adjacency matrix based on the final network connectivity. The
signaling parameters of the Gilbert Randomized networks are the
same as those of the Full network.

4.6. Embedded Random Feed Network
Construction
We embedded the (Gilbert or Edge-Swap) randomized Feed
network into the Full network to generate the Embedded
Random Feed network. We constructed this network by
replacing the rows and columns of Full network’s distance
adjacency matrix with the values from the distance adjacency
matrix of the randomized Feed networks. All the signaling
parameters of the Full network were reused for the Embedded
Random Feed network.

4.7. Temporal Sequence Construction
A Temporal Sequence (TSeq) is a specific type of walk on a graph
(Diestel, 2006). This walk follows the trajectory of a quanta of
signal between nodes along edges on a graph. In our network
setting, TSeqs describe the trajectories of discrete signals, along
edges, connecting nodes. The trajectory consists of a set of nodes
traversed by an signal emanating from an initial node activation.
Since we were interested in TSeqs which traversing the Feed
network, we specified ASEL as the start node, and the VB and
DBmotorneurons as the end/traversed nodes. The resulting set of
TSeqs represent the parallel paths through the graph traversed by
signals beginning at the start node and traversing the end nodes
over a time interval of interest.

For example, let us say we have a graph G = (V ,E), a pair,
formed by a set of nodes V , and edges E. The elements of G
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consist of v ∈ V and e ∈ V × V . At time t = 0 lets say that node
v0, some element in V , activates. Assume that v0 has an outgoing
edge to v1, once the signal from v0 reaches v1, v1 activates, which
in turn generates an signal. Lets say that this process continues
until at some time t = tf when node vtf activates. The sequence of
nodes Xtf = (v0, v1 · · · vtf ) is the TSeqs starting at v0(start node)
traversing vtf (end node).

4.8. Temporal Sequence Plot Description
We construct a plot similar to the spike raster plot to visualize
the evolution of Temporal Sequences. We call this new plot a
Temporal Sequence plot (TSeq plot). It has time steps on the x-
axis, and node number on the y-axis. Each curve represents the
causal trajectory of node activity, represented by a TSeqs, over
time. We separate each TSeq curve by color.

The activation of different end nodes of a network can result
from shared signaling pathways. Those TSeqs contain shared
sub-sequences, these are represented by overlapping curves on
the TSeq plot. For example, in Figure 4A, we observe that all the
Repeating TSeqs go through the same set of nodes at stimulus
onset, before splitting into various Basis TSeqs.

In order to better visualize the paths through the nodes of
interest, we drew blue horizontal lines on the TSeq plots. Each
horizontal blue line is at the height of a neuron from to the VB
and DB sets of neurons. In the Feed network the DB neurons are
located on the y-axis at values between 17 and 23, while the VB
neurons are located on the y-axis at values between 31 and 41.
In the Full network the DB neurons are located on the y-axis at
values between 94 and 100, while VB neurons are located on the
y-axis at values between 248 and 258.

4.9. Basis Sequence Construction
The Basis Temporal Sequences (Basis TSeqs) are derived from the
original set of TSeqs captured over the simulation time interval
of interest. Basis TSeqs consist of two sets of sequences, the set
of One-Time Temporal Sequences (One-Time TSeqs) and the
set of Repeating Temporal Sequences (Repeating TSeqs). First,
we describe the intuition behind each of the constituent sets of
sequences, then we will define them in more detail. Repeating
sub-sequences result from signals traversing cycles on a graph
since no node can spontaneously generate signals (discounting
external stimuli). The nodes and edges on a closed walk can give
rise to repeating network activity, therefore, they are candidate
pattern generators of the network. Some TSeqs which result from
signal traversals of graph cycles may only differ from one another
by the number of repeating sub-sequences. For each TSeq which
differ in repeating sub-sequences, we create a compressed TSeq.
We compose a set of all the compressed TSeqs and call it the set
of Repeating TSeqs. Given the description of the set of Repeating
TSeqs, we can readily describe the set of One-Time TSeqs as the
remaining TSeqs which are not Repeating TSeqs.

More formally, let X be the set of all TSeqs. Let R be the set of
Repeating TSeqs in X, R ⊆ X, and let U be the set of One-Time
TSeqs, U ⊆ X. The sets R and U are such that R ∩ U = ∅.
That is to say no TSeqs can be a member of both the Repeating
TSeqs and the One-Time TSeqs. The members of sets R and S are
described next.

To determine whether some xi ∈ X is a member of R we
analyze the sub-sequences in xi. The result is that for some
ri ∈ R and rj ∈ R, the only difference between ri and rj is in
the repetition of some sub-sequences. To determine membership
of xi in R, we need to construct a dictionary of candidate
sub-sequence repetitions. Let us assume that xi contains sub-
sequences which repeat in different parts of its sequence. Let
I = {i1, i2 · · · in} be the set of repeating sub-sequences of xi.
Where each i ∈ I is the sub-sequence but without repeats, that
is, each element of I is a primitive sequence. To account for the
repeats, let K = {k1, k2 · · · kn} be the set containing the number
of repetitions of each of the primitive sequences in I. Now, any
x ∈ X can be re-written as combination of primitive sequences
together with its non-repeating sub-sequences. Concretely, given
some TSeq x, we compress all its repeating sub-sequences in the

form of i
kj
j , where j is the j

th sub-sequence in I, which takes on

kj repetitions.
Every TSeq, xi ∈ X, which can be derived from changing

the number of repetitions of a primitive sequence, to match
another sequence, xj ∈ X is considered a Repeating TSeq. Both
xi and xj are considered elements of R. Contained in the set I
are the candidate pattern generators (Marder and Bucher, 2001;
Guertin, 2013) of the network, that is, the sequence of node
activations which sustain ongoing network activity. These are
precisely the realized cycles of the graph. It is not necessary that
the dynamics realizes all the possible cycles of the graph. Since
the elements of R are attained from observing network dynamics,
elements of R are not guaranteed to repeat indefinitely, therefore,
Repeating TSeqs do not necessarily represent true periodic
network activity.

Given the definition of Repeating Sequences, we can define
the set U of One-Time TSeqs as U = {u|u ∈ X, u /∈ R}. The
difference between R and U is that for all xi ∈ U there is no
other sequence xj ∈ X such that the difference between xi and
xj is only in some repetition of a sub-sequence in xi. Note, ui ∈
U may contain repeating sub-sequences. Since there are many
approaches to ascertain Basis TSeqs, we do not provide an explicit
algorithm to extract Basis TSeqs. It is possible to reconstruct all
TSeqs in X form the Basis TSeqs and knowledge of the number
of repetitions of each sub-sequence.
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