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Abstract. Category theory has been recently used as a tool for constructing and

modeling an information flow framework. Here, we use the theory of preradicals

to show that the flow of information can be described using preradicals and

its properties. We show that preradicals generalize the notion of persistence

to spaces where the underlying structure forms a directed acyclic graph. We

prove that the persistence module associated with a directed acyclic graph can

be obtained by a particular α preradical. Given how preradicals are defined, they

can be considered as compatible choice assignments that preserve the underlying

structure of the modeled system. This drives us to generalize the notions of

standard persistence, zigzag persistence, and multidirectional persistence.
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1 Introduction

This is the first of two related papers that aim to build a formal framework for the conceptual axiom
that in a general sense the flow of information through a network, independent of the physical
processes that carry that information in any specific network, will always follow a path of ‘least
resistance’ that is ultimately responsible for the consequential dynamics on the network. While
distinct physical processes are responsible for driving this process, we propose that a least resistive
information flow path is a natural consequence and universal phenomenon. The critical intuition
here is that while a priori descriptive models or algorithmic rules may set up the conditions for
the dynamics of a network, it is the flow of signals and information through the network bounded
by physical constraints that dictate how computational events are prioritized and executed, by
following a path of least resistance that are dependent on such constraints. Yet, to the best of our
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knowledge, a theoretical framework that captures the universality of this effect, independent of any
physical details, but which also allows computing and predicting what those information flow least
resistive pathways are in real networks, does not exist.

For example, in a literal way, water flowing through a set of interconnected pipes will flow
down a path of least resistance as dictated by the pressure fronts associated with the flow. The
physics responsible for this include the incompressibility of water and the compliance and diameter
of the pipes in the network. The resultant effect is a ’natural’ flow dictated and constrained by
the physics that takes the route of least effort. Weight changes in artificial neural networks are
shaped by constraints, i.e. their own version of the physics that makes them up, imposed by
the connectivity structure of the network, error or loss functions, and the algorithms (rules) that
affect weight changes, e.g. backpropagation. The consequence of these constraints and rules are
decentralized but integrated weight changes that allow the network to properly classify new inputs.
The weight changes themselves however, follow a flow of least effort or resistance that is a natural
consequence of the physical make up and rules of the network. Another example are real biological
neural networks composed of interconnected neurons. In fact, this is our main practical motivation
for this work. There are myriad of quantiative models that describe different aspects of neural
dynamics and the structural rules that specify how brain networks are connected. Yet, describing
how internal computations and information flows are prioritized is not possible, regardless of the
model. We do not fully understand the foundational principles that govern how networks of neurons
successfully operate autonomously. What the drivers are that shape the prioritization, order, and
decisions of the internal computations and operations after a network receives an input. And
how those computations produce actionable information that they pass on to other neurons. This
is distinct from specifying an algorithm a network needs to follow or a model of the network.
Mechanistically in the case of biological neural networks, an example of a fundamental physical
process that impose such constraints are structure (connectivity and geometry)-function constraints
and energy considerations [17]. In human social networks, we tend to make friends with individuals
we relate to and like after introductions are made. In other words, again, network connectivity is
one physical constraint that sets the condition for the creation of pathways that reflect least effort
or resistance, i.e. individuals we like. In many systems, including artificial neural networks and real
biological brain networks, these processes are responsible for the passing of information from one
scale of organization or hierarchy to another.

In this work, we rely on category theory to describe how information flows through a system
that can be modeled using objects and morphisms in the category K-Mod, where K is a field. Our
approach allows us to show that the flow of information is preserved within the underlying structure
of the modeled system. We address this by using a theory that involves the use of persistent modules,
which derive from persistence homology. Persistent homology considers a family of topological spaces
and inclusions from one space into another to find topological features common to subsets of these
spaces. The persistent homology is defined by homology groups that allow classifying invariant
topological features. We can think, for example, of the standard persistent homology where spaces
are linearly ordered with one space included in the next. Similarly, we can think of zigzag persistence
[5], where the spaces are linearly ordered but the inclusions can occur in either direction. Another
example is multidimensional persistence [7] which operates in multiple dimensions on a grid with
inclusion maps parallel to the coordinate axis.

In [8] Chambers and Letsher extended these notions of persistence by considering that the
underlying structure form a directed acyclic graph (DAG), naming it DAG persistence. These
authors used an algebraic representation called G-module which have a commutative condition that
appear from following distinct paths in a DAG between a same pair of vertices. It is using this
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G-module structure where DAG persistence gets common subgroups to all of the homology groups.
This representation construction is based on algebraic structures (i.e. vector spaces) that can be
considered as objects in the category of K-modules for K a field. In this paper, we will describe
persistence from a category theory perspective, using a tool known as preradicals. Preradicals
produce compatible substructures within each object that are preserved by morphisms, allowing for
an efficient determination of algebraic invariants. Using preradicals that we show how information
flows through the G-module representation.

In this paper, we generalize the notion of persistence by showing that the persistence of a G-
module, as defined in [8], can be obtained using a particular type of preradical in the category
K-Mod. This generalization allows us to use preradicals to examine how information is transmitted
between the objects that comprise the G-module representation in such a way that the underlying
structure is preserved.

The paper is organized as follows: in Section 2 we present preliminary definitions for directed
acyclic graphs and quivers. We then give the basic construction of a quiver representation and
the definition of persistence in a G-module. In Section 3 we introduce the definition of preradicals
with the four principal operations between them. We discuss the role of preradicals as a tool to
describe the way information is transmitted within the category, such that the structure is preserved.
We conclude this section with the definition of the α and ω preradicals. Our main contributions
are introduced in Section 4, where we show that the persistence of a G-module whose underlying
structure is a single-source single-sink graph, is obtained by the preradical αMs

Ms
. We then generalize

this proposition to a G-module whose underlying structure is a graph with n sources and m sinks.
Section 5 discuss the role of preradicals as a way for describing the flow of information. Section 6
provides some concluding arguments. Finally, in Appendix A we provide a brief description of the
construction of homology groups as well as the persistence homology group; whereas in Appendix
B we mention different categories where the G-module representation of a DAG can be consider,
and whose decomposition theorems are still valid.

2 Preliminaries

We begin by giving preliminary definitions of relevance to the rest of our paper. For a complete
introduction to homology groups we recommend reading some of standard references [3], [6], [11]
and [16]. Most models of persistence use a collection of spaces and inclusions of one space into
another to find topological features common to subsets among these spaces. In [8] they show a
generalization that considers inclusions over a set of spaces that form a directed graph, with the
constrains that the graph must be a directed acyclic graph (DAG): acyclic and not contain repeated
edges.

Definition 2.1. For a simple directed acyclic graph G = (V,E), a graph filtration χG of a topological
space X is a pair ({Xv}v∈V , {fe}e∈E) such that

(1) Xv ⊂ X for all v ∈ V ;

(2) If e = (v, u) ∈ E then fe : Xv −→ Xu is a continuous embedding (or inclusion) of Xv into
Xu.

Thus, the persistence group of a filtration in a topological space can be considered as the
subgroups common to all of the homology groups.

A quiver is a directed graph where loops and multiple directed edges between the same vertices
are allowed. Formally, a quiver is quadruple Q = (V,E, s, t) where V is the set of vertices, E the
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set of edges and s, t : E −→ V are two maps, assigning the starting vertex and the ending vertex
for each edge. In this case, for an edge e with s(e) = u and t(e) = v we write e : u −→ v. A quiver
Q is finite if both sets V and E are finite. In particular, every DAG is a quiver.

Typically quivers admit a representation over a field K which assigns to each vertex v a vector
space Wv and to each arrow e : u −→ v a K-linear morphism map fe : Wu −→ Wv. More formally,

Definition 2.2. Given a quiver Q = (V,E, s, t), a representation of Q over a field K is a pair of
families

(

{Wv}v∈V , {fe}e∈E

)

where for each arrow e : u :−→ v, fe : Wu −→ Wv is a linear morphism.

If M =
(

{Wv}v∈V , {fe}e∈E

)

and M ′ =
(

{W ′
v}v∈V , {f

′
e}e∈E

)

are two representations of a quiver

Q, a morphism γ : M −→ M ′ is a family of linear morphisms {γv : Wv −→ W ′
v}v∈V such that the

diagram

Wu
fe //

γu

��

Wv

γv

��
W ′

u

f ′
e // W ′

v.

commutes for any e ∈ E. The composition of morphisms γ : M −→ M ′ and β : M ′ −→ M ′′ is
the morphisms (β ◦ γ) : M −→ M ′′ defined by the family of compositions {βv ◦ γv}v∈V , which is
clearly associative and has as identity element IdM := {IdVi

}i∈V . This shows that the collection of
all representations for a quiver Q along with the composition operation forms a category, which we
denote by Rep(Q).

A representation of a quiver Q is referred to as a G-module (see [1]). Since we are interested in
quivers with relations, specifically commutative conditions, we add the following condition:

Definition 2.3. The diagrams commutes: for any path γ = e1, · · · , en in a quiver Q, one can
extend this to a function fγ = fen ◦ · · · ◦ fe1 in the G-module. Then, given γ and γ′ two different
directed paths in Q connecting vertices u and v, commutativity means fγ = fγ′ in the G-module.

The next definition provides the framework to generalize the notion of zigzag persistence, and
the multidirectional persistence, which will be shown in Section 4.

Definition 2.4. [8, Definition 2.3] For a directed acyclic graph G = (V,E) a k-dimensional persis-
tence module for a graph filtration χG, is the commutative G-module ({Wv}v∈V , {fe}e∈E) where

(i) Wv = Hk(Xv) for all v ∈ V ;

(ii) For every edge e = (u, v) ∈ E, fe : Hk(Xu) −→ Hk(Xv) is the map induced by the the
inclusion Xu →֒ Xv.

Suppose now we are given a directed acyclic graph G = (V,E) and its commutative G-module
representation, denoted as M = ({Wv}v∈V , {fe}e∈E). A cone in the category K-Mod for the G-
module M is a pair (L, {ηu}u∈V ) where L is a vector space and ηu is a linear morphism for each
u ∈ V , such that for any edge e = (u, v), we have the following commutative diagram

L

Wu Wv

ηu ηv

fe

,
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that is, fe ◦ ηu = ηv. Thus, a limit for the G-module is a cone with the universal property: for any
other cone (L′, {η′u}u∈V ) there exist a unique morphism η : L′ −→ L such that ηu ◦ η = η′u for every
u ∈ V :

L′

L Wu

η η′u

ηu

.

A cocone for the G-module M is defined in a similar way, as the pair (L, {ηu}u∈V ) where L is
a vector space and ηu is a linear morphisms for each u ∈ V , such that for any edge e = (u, v), the
following diagram commutes

Wu Wv

L

fe

ηu ηv
,

A colimit for the G-module M is a cocone with the universal property: for any other cocone
(L′, {η′u}u∈V ) there exist a unique morphism η : L −→ L′ such that ∀u ∈ V , the diagram

Wu

L L′

ηu η′u

η

.

is commutative.
The category K-Mod is known to be complete and cocomplete, that is, where all small limits

and colimits exists. Since commutative diagrams are small categories, the limit and colimit always
exist for a commutative G-module. Therefore, by the commutativity of the G-module M and the
categorical properties of the limit and colimit, we have an induced map

ηM : lim(M) −→ colim(M).

This is the precursor to defining the persistence of a G-module.

Definition 2.5. (Definition 2.5 in [8].) If M is a commutative G-module then the persistence of
M , denoted by P (M), is the image ηM (lim(M)).

The persistence P (M) of a G-module M tells us how much information of lim(M) persists
through the G-module structure but not about the information that persists from each component
of the G-module. In this context, preradicals can provide information about the evolution of the
substructures of ηM (lim(M)) as well as the substructures from each component, along the G-module
representation. On the one hand, by applying a preradical σ to lim(M)

ηM−→ colim(M) we can get
the substructure defined by σ that is preserved in the G-module. On the other hand, by applying
a preradical σ to each component of the G-module representation, we obtain a blue print of the
information defined by σ that is present in the entire G-module structure.

3 Preradicals

In this section we consider the role of preradicals as a way to describe how information is transmitted
within the objects and arrows that comprise the category of R-Mod. For a complete introduction
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to preradicals and its properties in R-Mod see [2], [14] and [15]. Preradicals are functors that
assign to each object a subobject in such a way that for any morphism between two objects, the
restriction and corestriction of the morphisms to the respective subojects are preserved. In other
words, preradicals behave as subfunctors of the identity functor.

Example. Consider the category Z-Mod of all Z-modules. This category is isomorphic to the cate-
gory Ab of all abelian groups. Now, given M ∈ Z-Mod, one can define

σ(M) = {x ∈ M | 2x = 0}.

Notice first that σ(M) is a submodule of M . Also, for any morphism f : M −→ M ′ in Z-Mod
and any y ∈ M , we have that f(2y) = 2f(y). Thus, if x ∈ σ(M) we have that 2f(x) = f(2x) = 0,
which implies that f(x) ∈ σ(M ′). Hence, f(σ(M)) ⊆ σ(M ′) which in turns implies that

M
f // M ′

σ(M)
f| //

ι

OO

σ(M ′).

ι

OO

is a commutative diagram.

The above example shows an endofunctor 1 on Z-Mod which acts as a subfunctor of the identity
functor on Z-Mod. This is precisely the definition of a preradical:

Definition 3.1. Let C be a category. A preradical σ on the category C is a functor that assigns to
each object C ∈ C, a subobject σ(C) such that for each morphism f : C −→ C ′ in C, we have the
commutative diagram

C
f // C ′

σ(C)
σ(f) //

ι

OO

σ(C ′).

ι

OO

Here, σ(f) is the restriction and corestriction of f to σ(C) and σ(C ′) respectively, that is, σ(f) :=
f |σ(C): σ(C) −→ σ(C ′). Also, ι is represents the inclusion map.

Operations within objects of a category allow us to define operations between preradicals. This
is the case when we consider the category of R-modules, where R is a commutative unitary ring,
and the category of modular complete lattices LM (see [13]). For the purpose of this work, we will
consider the category R-Mod, where we can define four principal operations: if M ∈ R-Mod and
σ, τ are two preradicals, then

i) The meet (σ ∧ τ)(M) = σ(M) ∩ σ(M);

ii) The join (σ ∨ τ)(M) = σ(M) + τ(M);

iii) The product (σ · τ)(M) = σ(τ(M));

(iv) The coproduct (σ : τ)(M) is such that

(σ : τ)(M)/σ(M) = τ(M/σ(M)).

1An endofunctor is a functor whose domain is equal to its codomein.
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We will assume for now that the considered category is K-Mod with K a field, although the
results in this sections holds for a commutative ring with unit R. A diagram of shape J in the
category K-Mod is a functor F : J −→ K-Mod. Commonly, we use small categories to define
diagrams in a category, since these have only a set’s worth of arrows (and thus, also of objects
since every object in the category defines an identity morphisms). For instance, if we have a linear
ordered shape diagram (that is, where J is a poset)

· · · // Mi
f // Mi+1

g // . . . // Mj
h // Mj+1

// · · ·

we can apply any preradical σ obtaining the commutative diagrams

· · · // Mi
f // Mi+1

g // . . . // Mj
h // Mj+1

// · · ·

· · ·

ι

OO

// σ(Mi)
f| //

ι

OO

σ(Mi+1)
g| //

ι

OO

. . . //

ι

OO

σ(Mj)

ι

OO

h| // σ(Mj+1)

ι

OO

// · · · .

ι

OO

Since the diagrams are all commutative, the collection {σ(Mi)}i∈J tells us how the information,
regarding to σ, flows through the diagram of shape J .

We will denote by K-pr the collection of all preradicals on K-Mod, where K is a field. There
is a natural partial ordering in K-pr given by σ ≤ τ if and only if σ(M) ≤ τ(M). Also, as the
intersection and sum of an arbitrary family of K-modules is also an K-module, then both, the join
and the meet operations can be defined for any family of preradicals making K-pr a big lattice 2:
for any family {τα}α∈I of preradicals and K-module M ,

i)
(
∨

α∈I τα
)

(M) = Σα∈I τα(M),

ii)
(
∧

α∈I τα
)

(M) = ∩α∈I τα(M).

The four main operations defined on K-pr enable us to describe the information of the system
in each component M :

• The meet of a family {σ}i∈I of preradicals gives us the minimum information present in σi,
for each i ∈ I.

• The join of a family {σ}i∈I of preradicals gives us the maximum information generated by all
σi, with i ∈ I.

• The product of σ · τ gives us the information of σ after the information of τ is processed.

• The coproduct (σ : τ) gives the information of τ which is conditioned to contain the informa-
tion of σ.

Each preradical σ can be considered as a compatible choice assignments on the category K-
Mod in the following sense: for a preradical σ, the submodule σ(C) of C is compatible with any
other submodule σ(D) of D, whenever there is a morphism f : C −→ D. Thus, if we regard that
how information is transmitted within a category is through the collection of all the morphisms
that belongs to the category, then these compatible choice assignments can be considered as how
compatible information is transmitted within the category.

In K-Mod, we can define the following two preradicals. First, given a K-module M and a
submodule N , the preradical αM

N is such that evaluated in any K-module W is

2A big lattice is a class (not necessarily a set) having joins and meets for arbitrary families (indexed by
a class) of elements.
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αM
N (W ) =

∑

{f(N) | f ∈ Hom(M,W )},

where Hom(M,W ) = {f : M −→ W )}. Second, given N , a submodule of M , one can define the
preradical ωM

N which evaluated in any K-module W is

ωM
N (W ) = ∩{f−1(N) | f ∈ Hom(W,M)},

where Hom(W,M) = {f : W −→ M)} and f−1(N) denotes the inverse image of N under the
morphism f . . One can easily prove that every preradical σ in K-Mod can be written as

σ =
∨

{αM
σ(M)|M ∈ K-Mod} =

∧

{ωM
σ(M)|M ∈ K-Mod}.

We end this section with the next result which will be used in the discussions of Section 5:

Proposition 3.2. [2][Proposition I.1.2] Let σ be a preradical and {Mi}i∈I be a family of R-modules.
Then σ(⊕i∈I Mi) = ⊕i∈I σ(Mi).

4 Persistence Through Preradicals

In this section we discuss our main technical contributions and results. First, observe how for any
quiver Q one can define the free category or path category of the quiver Q, denoted as Λ(Q), whose
objects are the vertices of the quiver Q, and whose morphisms are paths between objects. Here,
the composition operation is given by concatenation of paths. In this way, we can think of a G-
module representation as a diagram of shape Q in K-Mod. This diagram is given by the functor
F : Λ(Q) −→ K-Mod, which assigns to each object in Λ a K-vector space and to each arrow in
Λ(Q) a linear morphism. This fact will allow us to apply the α preradicals in K-Mod to express the
flow of information within the G-module representation structure associated to a directed acyclic
graph G = (V,E). In this case, the morphisms that defines each αM

N will be restricted to the ones
that appear in the G-module representation.

Suppose now we have a single-source single-sink graph G and its commutative G-module repre-
sentation M = ({Wv}v∈V , {fe}e∈E)

Ws
f // Wi

g // . . . // Wj
h // Wt,

where Ws and Wt represents the source and the sink respectively. As its shown in [8, Lemma 3.3],
the limit and colimit of the G-module M are Ws and Wt respectively. Thus, the persistence of M
is

P (M) = im(Ws
ϕ

−→ Wt) = ϕ(Ws),

where ϕ is the linear function from the source Ws to the sink Wt. As we next show, the persistence
P (M) in [8, Lemma 3.3] can also be described using an α preradical:

Proposition 4.1. Let M = ({Wv}v∈V , {fe}e∈E) be a commutative G-module such that the underly-
ing directed acyclic graph is a single-source single-sink graph, with vertices Ws and Wt respectively.
The persistence shown in [8, Lemma 3.3], is the same as the preradical αWs

Ws
evaluated in Wt. In this

case, the considered morphisms g : Ws −→ Wt are restricted to the ones appearing in the G-module
representation.
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Proof. Let M = ({Wv}v∈V , {fe}e∈E) be a commutative G-module such that the underlying di-
rected acyclic graph is a single-source single-sink graph, with vertices Ws and Wt respectively. By
definition, the preradical αWs

Ws
evaluated at Wt is

αWs

Ws
(Wt) =

∑

{g(Ws) | g ∈ Hom(Ws,Wt)}.

Here, Hom(Ws,Wt) is taken as all the linear morphisms in K-Mod, from Ws to Wt. Now, if we
restrict the morphisms in Hom(Ws,Wt) to the ones that appear in the commutative G-module
representation, we will still have the commutative diagrams

Ws
f // Wi

g // . . . // Wj
h // Wt

αWs

Ws
(Ws)

f| //

ι

OO

αWs

Ws
(Wi)

g| //

ι

OO

. . . // αWs

Ws
(Wj)

ι

OO

h| // αWs

Ws
(Wt).

ι

OO

Since the G-module is commutative we have that g(Ws) = ϕ(M) for every g ∈ Hom(Ws,Wt). Thus,

αWs

Ws
(Wt) =

∑

{g(Ws) | g ∈ M ∧ g ∈ Hom(Ws,Wt)}

=
∑

ϕ(M) = ϕ(M) = im(ϕ) = P (M).

From the preceding Proposition, we notice that if σ is any other preradical in K-Mod, we can
apply it to each component of the diagram that comprise the G-module representation, obtaining
commutative diagrams

Ws
f // Wi

g // . . . // Wj
h // Wt

σ(Ws)
f| //

ι

OO

σ(Wi)
g| //

ι

OO

. . . // σ(Wj)

ι

OO

h| // σ(Wt).

ι

OO

Since each diagram commutes and the G-module M is commutative, it follows that the information
defined by the preradical σ that persists through the G-module representation is ϕ(σ(Ws)) ⊂
im(ϕ) ∩ σ(Wt). Furthermore, we can apply any of the four operations σ ∧ τ , σ ∨ τ , σ · τ and
(σ : τ) between any two preradicals σ and τ , to the G-module representation obtaining in each case
different information. The fact that this information persists through the G-module representation
is due to the commutative diagrams property which preserves the underlying structure.

As shown in [8, Proposition 3.4], DAG persistence generalizes the Standard persistence, the
Zigzag persistence and the Multidimensional persistence. In their proof, the authors rely on [8,
Lemma 3.3] to show that the Standard and Multidimensional persistence homology groups can be
defined in terms of the image of a map, whereas in the case of zigzag persistence, the definition
of the zigzag persistence module is identical to the definition of DAG persistence module. In the
following result we show the corresponding proposition using preradicals.

Proposition 4.2. Suppose χG is a graph filtration of X. Then:

(1) (Standard Persistence)
If G is the graph corresponding to the filtration X0 → X1 → · · · → Xn and Ii,p is the subgraph

consisting of vertices {Xi, · · · ,Xp} then H
Ii,p
k (χG) ∼= α

Hk(Xi)
Hk(Xi)

(Hk(Xi+p)).

9



(2) (Multidimensional Persistence)
Let χ = {Xv}v∈{0,...,m}d be a multifiltration with underlying graph G. If Gu,v is the subgraph

with vertices {w ∈ G|u ≤ w ≤ v} then the rank invariant ρX,k(u, v) = dim α
Hk(Xu)
Hk(Xu)

(Hk(Xv))

Proof. (1) From the fact that H
Ii,p
k (χG) = im(Hk(Xi) −→ Hk(Xi+p)) and that in a graph filtration

the diagrams commute, it follows that

H
Ii,p
k (χG) = im(Hk(Xi) −→ Hk(Xi+p)) = α

Hk(Xi)
Hk(Xi)

(Hk(Xi+p)).

(2) The rank invariant ρX,k(u, v) is defined as the dimension of the image of the induced map
Hk(Xu) −→ Hk(Xv). Since the diagram commutes, any map which follows a path from u to v in
the graph will have the same image. Thus, we have that

H
Gu,v

k = im(Hk(Xu) −→ Hk(Xv)) = α
Hk(Xu)
Hk(Xu)

(Hk(Xv)).

Hence, the rank invariant is the dimension of the subspace defined by the preradical

α
Hk(Xu)
Hk(Xu)

(Hk(Xv)).

We now generalize Proposition 4.1 by assuming that the underlying DAG have n sources
s1, . . . , sn and m sinks t1, . . . , tm.

Proposition 4.3. Let M be a G-module such that the underlying directed acyclic graph have n
sources and m sinks. The persistence of the source Wsi is obtained by evaluating the preradical

α
lim(M)
⊕n

i=1
Wsi

(colim(M)) =
∑

{f(⊕n
i=1Wsi) | f : lim(M) −→ colim(M)}

where the morphisms f : lim(M) −→ colim(M) are restricted to the ones that appear in the extended
G-module representation.

Proof. Let M be a commutative G-module such that the underlying directed acyclic graph have n
sources and m sinks.

Ws1 Wa · · · Wt1

Ws2 Wb · · · Wt2

... Wc · · ·
...

Wsn Wd · · · Wtm

For any cone (C, {ηv}v∈V ) of M we have that all morphisms ηj : C −→ Wj are determined by
some ηsi : C −→ Wsi with i ∈ {1, . . . , n} in the following way:

10



C

Ws1 Wa · · ·

Ws2 . . .
...

ηa

ηs1

ηs2 f1,s

f2,s

due to the commutativity property of a cone, we have that

fs1,a ◦ ηs1 = ηa = fs2,a ◦ ηs2

that is, any ηl with l 6= {s1, · · · , sn} is factorized by some ηsi , for i = 1, · · · , n. Furthermore, the
above argument shows that any two or more factorizations of ηl are equal. Thus, when considering
the persistence of the commutative G-module M , it suffices to take the limit lim(M) along with the
morphisms ρsi : lim(M) −→ Wsi for i = 1, · · · , n. A similar argument shows that for the colimit,
if suffices to take the morphisms ιti : Wti −→ colim(M), for i = 1, · · · ,m.

By taking the limit and colimit of M we obtain an extension of the commutative G-module
representation as a single-source single-sink graph:

Ws1 Wa · · · Wt1

lim(M) Ws2 Vb · · · Wt2 colim(M)

... Wc · · ·
...

Wsk Wd · · · Wtm

ιt1
ρs1

ρs2

ρsk

ρsn

ιt2

ιtk

ιtm

Notice that the lim(M) = Πj∈V Wj which has Wsi as a submodule for i = 1, . . . , n as well as
the direct sum ⊕n

i=1Wsi . Hence, since all morphisms from lim(M) to colim(M) goes through some
Wsi , for i = 1, . . . , n, if follows that the persistence of the commutative G-module M is the sum of
the images of all morphisms from lim(M) to colim(M), that is,

α
lim(M)
⊕n

i=1
Wsi

(colim(M)) =
∑

{f(⊕n
i=1Wsi) | f : lim(M) −→ colim(M)}

Using preradicals, we can also describe the persistence of information defined by a proper subset
of sinks:

Corollary 4.4. Let M be a commutative G-module such that the underlying directed acyclic graph
have n sources and m sinks. The persistence of the sources Wsi1

, · · ·Wsil
is obtained by evaluating

the preradical

11



α
lim(M)

⊕l
k=1

Wsik

(colim(M)) =
∑

{f(⊕l
k=1Wsik

) | f : lim(M) −→ colim(M)}

Critically, we note that these results can also be applied to any subspace Lsi of Wsi and hence,

to any subspace of ⊕l
k=1Wsik

. In such a case, by considering the preradical αlim(M)
Lsi

we obtain the

information from Lsi that persists to colim(M).
In a sense, the preradicals αM

N fulfill the role of propagating information forward-wise. In other
words, we obtain the direct information of N in K that comes from M (in this case morphisms
goes from M −→ K). When the structure of the G-module allows having more morphisms in either
direction between its components, we can make use of the ω preradicals to obtain information that
also persists through the G-module representation. In this case, the direction of the morphisms
considered in the ω preradicals is reversed, that is, now morphisms go from K −→ M and we are
taking the intersection of all inverse images of N . This indirect information persists through the G-
module structure since for any linear morphisms f : K −→ K ′ we obtain a commutative diagrams:
given a vector space Wj and a subspace Lj, the preradical ω

Wj

Lj
induces the following commutative

diagram

K
f // K ′

ω
Wj

Lj
(K)

f| //

ι

OO

ω
Wj

Lj
(K ′).

ι

OO

5 Preradicals and their Interpretation

In this last section we sketch how preradicals can be used to describe the flow of information from
a general perspective. Motivated by principles from Shannon’s version of information theory, where
messages are created by choosing letters or words from a set, preradicals are also functions of choice
whose choices are compatible with the structure of the category. This gives preradicals a high order
approximation to the information that comprise the category itself.

Any system can be decomposed into a collection of objects called components, which are re-
lated to each other by an input-output relationship. These input-output relationships connect the
components, and can be represented by an oriented arrow A −→ B if an output of A is an input of
B. This gives the system a directed graph representation. However, such a representation cannot
describe many situations of the actual input-output existing relations between the components of
the system. For instance, a component A may contribute to multiple distinct outputs, although the
directed graph representation will only show one arrow connecting A to B. To overcome this, we
say that two components A and B are connected if there exists a function f : A −→ B; this allows
us to consider the set of all input-output relations between these two components. Thus, the set
of functions describing the input-output relations is determined by the components A and B. We
will denote this set by Hom(A,B). It is well known that any directed graph can be associated with
a category whose objects represent the vertices of the graph and whose morphisms correspond to
the paths between vertices in the graph. For the purpose of this work, instead, we will consider the
directed graph as a quiver, so that we can associate it with its G-module representation.

Let us consider a component B which receives two inputs from components A1 and A2. Then,
we have two functions f1 : A1 −→ B and f2 : A2 −→ B which represents a possible output-
input relationship between the respective source and target components. Both functions define a
transformation from the direct sum (or direct product since it has a finite number of components)
f : A1 ⊕A2 −→ B such that f ◦ ιi = fi, that is,

12



(

Ai
ιi
→֒ A1 ⊕A2

f
−→ B

)

= Ai
fi
−→ B,

where ιi : Ai −→ A1 ⊕A2 denotes the inclusion map.
As σ is a preradical, then σ(A1 ⊕A2) = σ(A1)⊕ σ(A2) and thus the diagram

A1 ⊕A2
f // B

σ(A1)⊕ σ(A2)
f | //

ι

OO

σ(B)

ι

OO

commutes. With this in mind, we obtain the information defined by the compatible choice assign-
ment σ relative to the transformation f within the system. This turns out to be

f(σ(A1))⊕ f(σ(A2)) ⊆ σ(B) ⊆ B.

We can generalize this argument to a number of n inputs from the components A1, · · · , An. In
this case, we get a set of n functions

A1
f1
−→ B,
...

An
fn
−→ B,

which induces a transformation f : ⊕n
i=1Ai −→ B such that f ◦ ιi = fi, that is,

(

Ai
ιi
→֒ ⊕n

i=1Ai
f

−→ B
)

= Ai
fi
−→ B, for each i ∈ {1, · · · , n}.

As σ is a preradical, then σ(⊕n
i Ai) = ⊕n

i=1σ(Ai) and thus

⊕n
i=1Ai

f // B

⊕n
i=1σ(Ai)

f | //

ι

OO

σ(B)

ι

OO

is a commutative diagram. Therefore, the information defined by the compatible choice assignment
σ relative with the transformation f is

f(⊕n
i=1σ(Ai)) = f(σ(A1))⊕ f(σ(A2))⊕ · · · ⊕ f(σ(An)) ⊆ σ(B) ⊆ B.

In the above construction, we obtained information about the system using a single preradical
σ. We now show that the join operation in R-pr allows us to obtain information defined by a finite
set of preradicals. In this case, each component will have an associated preradical which will give us
information about the input-output relationship between the source and the target components. The
whole construction will gather the amount of information generated by the set of preradicals relative
to the functions that comprise the input-output relationships among sources and target components.
Suppose we have two functions f1 : A1 −→ B and f2 : A2 −→ B which again represents a possible
input-output relationship between the respective source and target components. As we saw above,
these functions define a transformation from the direct sum (or product since it is a finite index)

13



f : A1 ⊕ A2 −→ B such that f ◦ ιi = fi for i = 1, 2. If σ and τ are two preradicals, then we have
the commutative diagrams

A1
f1 // B

σ(A1)
f1| //

ι

OO

σ(B)

ι

OO and A2
f2 // B

τ(A2)
f2| //

ι

OO

τ(B).

ι

OO (*)

Since f ◦ ιi = fi for i = 1, 2 and σ(B) + τ(B) ⊆ B, from (*) we have that

A1 ⊕A2
f // B

σ(A1)⊕ τ(A2)
f | //

ι

OO

σ(B) + τ(B)

ι

OO

is also a commutative diagram. Notice that σ(B) + τ(B) = (σ ∨ τ)(B).
The last argument holds for a number of n inputs from components A1, · · · , An to the component

B in a analogous way. In this case, if σ1, · · · σn are n preradicals, for each i ∈ {1, · · · , n} we have
the commutative diagrams

Ai
fi // B

σi(Ai)
fi| //

ι

OO

σi(B)

ι

OO

which imply the commutativity of the following diagram:

⊕n
i=1Ai

f // B

⊕n
i=1σi(Ai)

f | //

ι

OO

Σn
i=1σi(B).

ι

OO

Observe that Σn
i=1σi(B) is actually (σ1∨· · ·∨σn)(B), so as we would expect, the information defined

by the set of compatible choice assignments σ1, · · · , σn relative to the transformation f is at most
(σ1 ∨ · · · ∨ σn)(B).

We end this section by illustrating the broader case when the system has multiple output-input
relationships between two components. Suppose we have components A1, · · · , An whose outputs
are the input of a component B1, which in turn is also connected to C1 and C2 (Figure 1).

To obtain the total information that component B1 gets from components A1, · · · , An we must
take into consideration the limit lim(A) of the objects A1, · · · , An and define the preradical α using
lim(A). In this way, the total information obtained in component B1 is

α
lim(A)
lim(A)(B1) =

∑

{γ(lim(A))|γ : lim(A) −→ B1} =
∑3

i=1(fi ◦ ρ1)(lim(A)) +
∑2

j=1(gj ◦ ρ2)(lim(A))

+ · · ·+
∑2

r=1(hr ◦ ρ1)(lim(A)) =
∑3

i=1 fi(A1) +
∑2

j=1 gj(A2) + · · ·+
∑2

r=1 hr(An).

Here, we notice that it suffices to take the limit of the objects A1, · · ·An and not of all the objects
that comprise the system; this is because we are interested in the information that is obtained from
just these sources. In case two components Ai and Aj , have any input-output relationship, the
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A1 C1

lim(A) B1 colim(C)

A2
... C2

An

f1

f3

f2
ι1

ρ1

ρ2

ρn

k1

l1

k2

l2

g1

g2
ι2

h2

h1

Figure 1: Components with multiple connections.

limit’s commutativity property assure us that the ρ functions defined the limit construction also
carry that information when considered in the above equation.

On the other hand, to get information from the collection of components Ai’s to the component
C1, we take into account the preradical

α
lim(A)
lim(A)(C1) =

∑

{γ(lim(A))|γ : lim(A) −→ C1}

=
∑3

i=1(k1 ◦ fi)(A1) +
∑2

j=1(k1 ◦ gj)(A2) + · · ·+
∑2

r=1(k1 ◦ hr)(An)

+
∑3

i=1(k2 ◦ fi)(A1) +
∑2

j=1(k2 ◦ gj)(A2) + · · ·+
∑2

r=1(k2 ◦ hr)(An)

Observe that the information obtained from the source components which is also provided by the
morphism k1 : B1 −→ C1, is

∑3
i=1(k1 ◦ fi)(A1) +

∑2
j=1(k1 ◦ gj)(A2) + · · ·+

∑2
r=1(k1 ◦ hr)(An)

= k1

(

∑3
i=1 fi(A1) +

∑2
j=1 gj(A2) + · · · +

∑2
r=1 hr(An)

)

,

which correspond to the image in the commutative diagram:

B1
k1 // C1

α
lim(A)
lim(A)(B1)

k1| //

ι

OO

α
lim(A)
lim(A)(C1)

ι

OO

Any of the above arguments can be used to obtain the information from any subset Ai1 , · · · , Aim

from the components A1, · · · , An to any other component. In that case, we must consider the
submodule ⊕m

j=1Aij of lim(A) and apply the preradical αlim(A)
⊕m

j=1
Aij

. Finally, to obtain the information

that persists from lim(A) through the objects of the system, we must take into consideration the

colim(C) and apply the preradical αlim(A)
lim(A) to all functions f : lim(A) −→ colim(C) and then take

the sum of their images, just as in Proposition 4.3; this gives us the total information from the
components that flows through all the system.
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6 Conclusions

Preradicals are a tool from category theory that naturally describes the flow of information through
a system. By definition, these structures show how information is transmitted in such a way that
the underlying structure of the modeled system is preserved. Particularly, when we use a G-module
representation associated with a directed acyclic graph model, preradicals characterize the notion
of persistence in a G-module structure. Also, by the way they are defined, each preradical can
be considered as a compatible choice assignment that shows how certain substructures are related
within the modeled system. From a communication theory perspective, this provides a high order
approximation to the information that contained in the system.
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A Homology groups

Given a simplicial complex X, a k-chain is a formal sum Σn
i=1ciSi where each ci is an integer and

Si is an oriented k-simplex. The collection of k-chains forms a group which we denote by Ck(X).
In fact, Ck(X) is a free abelian group whose basis is in one-to-one correspondence with the set of
k-simplicies in X. There is a boundary homomorphisms

δk : Ck(X) −→ Ck−1(X)

that calculates the boundary of a chain and which satisfies δk−1 ◦ δk = 0 for all k. The kernel
of δk : Ck(X) −→ Ck−1(X) is called the cycle group and we denote it as Zk(X). The image of
δk+1 : Ck+1(X) −→ Ck(X) is called the boundary group and is denoted by Bk. Both Zk and Bk

are contained in Ck(X), and since δk−1 ◦ δk = 0, they satisfy Bk ⊆ Hk(X). Thus, the k-homology
group of X is defined as Hk(X) = Zk/Bk. When the coefficients in the formal sum are taken in a
field F , then Ck(X), Zk(X), Bk(X) and Hk(X) are all vector spaces.

Given a filtration X0 ⊆ X1 ⊆ · · ·Xn, the persistence homology group Hp
k(Xj) is defined as

the image of the homomorphism induced by the inclusion map ι : Xj →֒ Xj+t. In other words,
the persistence homology group Hp

k(Xj) = Im(ι∗) where ι∗ : Hk(Xj −→ Hk(Xj+t). Notice that
Hp

k(Xj) can be considered as a subgroup of Hp
k(Xj+t)

B G-module representation and preradicals

In the theory of G-module representation, one important fact is that each G-module have a unique
representation in indecomposibles, which are G-modules that cannot be written as a non-trivial
connected sum. This representation is unique as stated in the Theorem for finite dimensional
Algebras:

Theorem B.1. (Krull-Remak-Schmidt)
The decomposition of a commutative G-module is unique up to isomorphisms and permutation of
the summands.

The decomposition into indecomposibles allows us to compare when two G-modules are the
same up to isomorphisms. Since we are interested in finite commutative G-modules, then each
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representation have the form V = V1 ⊕ · · · ⊕ Vn, where each Vi is indecomposible. When modeling
data, this finiteness property makes computation more efficient when comparing two representations.

There are also other categories which can be used to make quiver representation and that satisfies
the property of decomposition into indecomposibles. Such is the case of finite dimensional algebras
over an algebraically closed field F and representations over artinian integral domain rings.

On the other hand, having a finite set of preradicals can be helpful to cluster information
when modeling data, in a efficient way. We now recall the definition of a ring R of having finite
representation type, in order to show these conditions.

Definition B.2. [10, Definition 3.1] A ring R is said to have finite representation type if it is left
artinian and if there are, up to isomorphisms, finitely many indecomposible finitely generated left
R-modules.

It is well known that any integral domain and artinian ring R is a field. When this is the case,
we have that the lattice of preradicals in R-Mod is finite, as is it stated in

Theorem B.3. [10, Theorem 3.5] For a commutative ring R the following conditions are equivalent:

(i) R is an artinian principal ideal ring.

(ii) R-pr is finite.

(iii) R-pr is an artinian (and/or noetherian) lattice.

(iv) R is a ring of finite representation type.

Hence, by using a representation with objects in a category R-Mod, where R is a artinian
principal ideal ring, we will have a finite set of preradicals with which we can see the flow of
information and the persistence through the representation. This, when applied to a system, can
save running time.
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