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Abstract. Algebraically, entropy can be defined for abelian groups and their

endomorphisms, and was latter extended to consider objects in a Flow category

derived from abelian categories, such as R-Mod with R a ring. Preradicals are

endofunctors which can be realized as compatible choice assignments in the cat-

egory where they are defined. Here we present a formal definition of entropy

for preradicals on R-Mod and show that the concept of entropy for preradicals

respects their order as a big lattice. Also, due to the connection between mod-

ules and complete bounded modular lattices, we provide a definition of entropy

for lattice preradicals, and show that this notion is equivalent, from a functorial

perspective, to the one defined for module preradicals.
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1 Introduction

This work is the second of two related papers that aim to use Category Theory as a natural way to
describe information flows in networks and relating these ideas to notions of Shannon information
theory. In [17] we showed that preradicals naturally describe the flow of information. To that end,
we used quiver representation theory to model a directed graph as a diagram with objects and
morphisms within the category R-Mod, for R a principal ideal domain. Particularly, we showed
that preradicals generalize the concept of persistence in filtrations, whose underlying structure has
the form of a directed acyclic graph.

Broadly, a preradical is an endofunctor 1 which acts as a subfunctor of the identity functor. Yet,
as described in [11], preradicals can be considered as compatible choice assignments in the category

1An endofunctor is a functor with the same domain and codomain
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where they are defined. Here, this property motivated us to study the dynamics that preradicals
induce on the objects and their corresponding endomorphisms. To approach this, we will rely on
concepts of entropy defined on abelian groups and their endomorphisms, and on concepts of entropy
defined on abelian categories.

The notion of entropy was first introduced in the field of thermodynamics as a measure of the
system’s disorder. It was later used in quantum mechanics where it was endowed with a deep
mathematical formalism. A third perspective that came later, known as Shannon entropy, measures
the efficiency of a system in transmitting information. When it comes to a mathematical subject,
entropy was first defined in topology in [1] by Adler, Konheim and McAndrew, for a continuous
self-map of a compact space. However, from an algebraic perspective, Weiss settles in [19] the notion
of algebraic entropy for an endomorphism of an abelian group. On the other hand, in [12] Peter
provides a slightly different definition of entropy for an automorphism of an abelian group, which
was later extended in [5] to consider endomorphisms of abelian groups. One substantial difference
between Peter’s and Weiss’s definitions is that, in the former one considers a supremum over all
finite subsets of a group G while in the latter one takes the supremum over all finite subgroups.

Afterwards, algebraic entropy was generalized in [15] to consider not only abelian groups (or
Z-modules), but modules over a unitary ring R. In this case, one considers invariants on R-Mod to
define an algebraic entropy: invariants are extended real valued functions that are invariant under
isomorphic objects. Specially, we focus on invariants i with at least two minimal requirements with
which one can associate an algebraic entropy to it. These two conditions comprise what we normally
call as subadditive invariant. In this work, we will define the notion of entropy for a preradical in
terms of an algebraic i-entropy, where i represents an invariant defined on R-Mod.

Lastly, due to the relation between lattice preradical and module preradicals described in [11],
we use functors to provide a notion of entropy for lattice preradicals, when restricted to a non-
full subcategory SLM of the category LM of complete bounded modular lattices and linear mor-
phisms. This functorial connection show that the definition of entropy for lattice preradicals is
order-respectful, and further, it is equivalent to the entropy defined for module preradicals.

The paper is organized as follows: in Section 2 we give some preliminary facts about the structure
of the category of flows FlowC for any category C. We also give a brief introduction to preradicals on
R-Mod along with notation, terminology, and basic properties. Section 3 shows that any preradical
defined on a category C induces a preradical on the category of flows associated to C. In particular,
we describe the α and ω preradicals in the category of flows FlowR-Mod with respect to the category
R-Mod. In Section 4 we define entropy for preradicals on R-Mod and display some examples. Right
after, we describe the entropy for preradicals on the category of flows FlowR-Mod. Finally, we use
some functorial properties between the big lattice of lattice preradicals and the big lattice of module
preradicals to define entropy for lattice preradicals, and prove some of its properties.

2 Preliminaries

2.1 The Category of Flows

Given a category C, the identity functor on C defines the special comma category (C ↓ C). This
category, also known as the category of arrows, is usually denoted by C2. The objects of the category
C2 are triplets (C1, C2, η), where C1, C2 are objects of C and η : C1 −→ C2 is a morphisms in C.
A morphism between two objects (C1, C2, η) and (D1,D2, ψ) of C2 is made of a pair (f, g) where
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f : C1 −→ D1 and g : C2 −→ D2 are morphisms in C such that the diagram

C1
η //

f

��

C2

g

��
D1

ψ // D2

commutes in C. This arrow category is in fact isomorphic to the functor category CI , where I is the
interval category consisting of just two objects and only one nontrivial morphisms connecting them
{0 −→ 1}.

We can impose two restrictions to the category C2 to obtain a particular subcategory denoted as
FlowC . The first restriction consists on taking as triplets (C1, C2, η) those that satisfies C1 = C2.
This way, the objects of FlowC are objects in C equipped by endomorphisms.

Definition 2.1. A flow in C is a pair (C,ϕ), where C is an object in C and ϕ : C −→ C is an
endomorphisms in C.

For the second restriction, we will take as morphisms those pairs (f, g) satisfying f = g. Thus,
a flow morphism between the flows (C,ϕ) and (D,ψ) is a morphism f : C −→ D in C such that the
diagram

C
ϕ //

f
��

C

f
��

D
ψ // D

commutes in C. Therefore, FlowC is the category whose objects are flows in C and whose morphisms
are flow morphisms.

We notice that the above construction implies that the category FlowC will not be a full sub-
category of C2, although it can inherit some properties of the category C. For instance, as shown in
[8], the category FlowC is isomorphic to the functor category CN, where N is considered as a one
object category. Thus, the category FlowC will be abelian when so is C.

There is a ’forgetful’ functor U : FlowC −→ C given by the assignment (C, η) 7−→ C on objects
and the assignment f 7−→ f on morphisms. This functor U ignores the dynamic induced by the
endomorphisms, since:

C
η //

f

��

C

f

��

U
7−→ C

f

��
D

µ // D D.

There is also an embedding functor E : C −→ FlowC given by the assignment C 7−→ (C, IdC ) on
objects and the assignment f 7−→ f on morphisms, that is,

C

f

��

E
7−→ C

Id //

f

��

C

f

��
D D

Id // D.

The next result will be useful for characterizing the subobjects in FlowC ; especially when
inducing preradicals from R-Mod to FlowR-Mod.
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Lemma 2.2. A flow morphism f in FlowC is a monomorphisms if U(f) = f is a monomorphism
in the category C.

Proof. For the sake of the proof, we will denote by f̄ the morphism in FlowC so that U(f̄) = f .
Let f be a monomorphism in C and let f̄ be the flow morphism such that U(f̄) = f . Suppose that
f̄ : (C, η) −→ (D,µ). If ḡ1, ḡ2 : (B, ξ) −→ (C, η) are two flow morphisms such that f̄ ◦ ḡ1 = f̄ ◦ ḡ2,
then we have the commutative diagrams

B
ξ //

g1
��

B

g1
��

B
ξ //

g2
��

B

g2
��

C
η //

f
��

C

f
��

= C
η //

f
��

C

f
��

D
µ // D D

µ // D

in C from which it follows that (f ◦ g1 ◦ ξ) = (f ◦ g2 ◦ ξ). Since f is a monomorphism in C, the last
equation simplifies to g1 ◦ ξ = g2 ◦ ξ. Now, as ḡ1, ḡ2 : (B, ξ) −→ (C, η) are both flow morphisms, the
condition g1 ◦ ξ = g2 ◦ ξ implies that the following diagrams define the same transformation:

B
ξ //

g1

��

B

g1

��
=

B
ξ //

g2

��

B

g2

��
C

η // C C
η // C,

Therefore, ḡ1 = ḡ2.

Formally, a subobject of the object (C, η) in FlowC , is an equivalence class of monomorphisms

into (C, η). Thus, we can write a subobject of (C, η) as a pair ((X,α), f) where (X,α)
f

−→ (C, η) is a
"representative" monomorphism in FlowC . By Lemma 2.2, it suffices to consider a monomorphism

X
f

−→ C in the category C. Hence, for the case C = R-Mod, we might choose, as a representative
of the equivalence class of (X, f), the pair (f(X), ι) where ι : f(X) →֒ C denotes the inclusion map.
Observe that, since f is a monomorphism in the category R-Mod, then f is an injective morphism
and thus X ∼= f(X). Further, by the commutativity of the diagram

X
α //

f

��

X

f

��
C

η // C,

induced by the flow morphism (X,α)
f

−→ (C, η), we have that η(f(X)) = f(α(X)) ⊆ f(X); in
other words, the endomorphism η restricts to f(X). Therefore, the diagram

f(X)
� _

��

η| // f(X)
_�

��
C

η // C

commutes in R-Mod, showing that the pair ((f(X), η|), ι) is also a representative subobject of (C, η)
for the equivalence class containing ((X,α), f).
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Remark 1. The forgetful functor U : FlowR-Mod −→ R-Mod maps each subobject in FlowR-Mod

to a subobject in R-Mod. In other words, if ((f(X), η|), ι) is a representative subobject of (C, η)
for the class of equivalence containing the flow monomorphism ((X,α), f), then ((f(X), ι) is a

representative subobject of C, for the class of equivalence that contains the monomorphism X
f

−→ C
in R-Mod.

2.2 Preradicals

Broadly, a preradical on C can be defined in terms of the 2-category of all endofunctors2 of C. This
2-category coincides with the functor category CC , whose objects are all endofunctors τ : C −→ C,
and whose morphisms are natural transformations, usually denoted by τ1 =⇒ τ2. Thus, a preradical
σ on C is the same as a co-pointed endofunctor of CC ; this is, an endofunctor σ : C −→ C for which
there is natural transformation σ =⇒ IdC , and where IdC denotes the identity functor. Observe
that σ =⇒ IdC means that one has a family of morphisms {ηC}C∈C -indexed by the objects of C-

such that, for each C,D ∈ C and each morphism C
f

−→ D in C, the following diagram commutes

C
f // D

σ(C)
σ(f) //

ηC

OO

σ(D).

ηD

OO

However, according to [13] one can also interpret a preradical on C as a subfunctor of the identity
functor IdC . In other words, a preradical is a functor that assign to each object A in C, a subobject

σ(A) in C such that, for any morphism A
f

−→ B in C, the restriction and corestriction of f to the

respective subobjects defines a morphisms σ(f) : σ(A)
f|
−→ σ(B) in C, which makes the following

diagram to commute

A
f // B

σ(A)
σ(f) //

ιA

OO

σ(B).

ιB

OO

Notice that in the above diagram, ιA and ιB denote the respective inclusion maps. In this way, as
the authors describe in [11], preradicals behave as compatible choice assignments, since these assign
to each object of the category C a subobject, in such a way that the choices are compatible with
respect to the morphism in C. In fact, this property is what makes preradicals useful for describing
the flow of information (see [17]).

In this work we will consider preradicals on a category C as subfunctors of the identity functor
IdC . Specially, we will start considering preradicals on R-Mod for a unitary ring R. Here, objects
of R-Mod corresponds to R-modules and subobjects corresponds to R-submodules. For a complete
introduction to preradicals and its properties on R-Mod see [7], [13] and [14].

Definition 2.3. A preradical σ on the category R-Mod is a functor σ : R-Mod −→ R-Mod that
assigns to each module M ∈ R-Mod, a submodule σ(M) such that for each morphism f : M −→M ′

2An endofunctor is a functor T : C −→ C whose domain is equal to its codomain
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in R-Mod, we have the commutative diagram

M
f //M ′

σ(M)
σ(f) //

ι

OO

σ(M ′).

ι

OO

Here, σ(f) is the restriction and corestriction of f to σ(M) and σ(M ′) respectively, that is,

σ(f) : = f |σ(M): σ(M) −→ σ(M ′).

Also, ι represents the inclusion map.

Example. Consider the category Z-Mod of all Z-modules. This category is isomorphic to the cate-
gory Ab of all abelian groups. Now, given M ∈ Z-Mod, one can define

σ(M) = {x ∈M | 3x = 0}.

Note that σ(M) is a submodule of M . Also, for any morphism f :M −→M ′ in Z-Mod and for
any y ∈M , one has that f(3y) = 3f(y). Thus, if x ∈ σ(M) then 3f(x) = f(3x) = 0, which implies
that f(x) ∈ σ(M ′). Hence, f(σ(M)) ⊆ σ(M ′) which in turns implies that

M
f //M ′

σ(M)
f| //

ι

OO

σ(M ′)

ι

OO

commutes in Z-Mod.

In the category R-Mod one can define four principal operations between preradicals: if M ∈ R-
Mod and σ, τ are two preradicals, then

i) (σ ∧ τ)(M) = σ(M) ∩ σ(M);

ii) (σ ∨ τ)(M) = σ(M) + τ(M);

iii) (σ · τ)(M) = σ(τ(M));

(iv) (σ : τ)(M) is the submodule of M such that

(σ : τ)(M)/σ(M) = τ(M/σ(M)).

The above operations are called the meet, the join, the product and the coproduct respectively.
We note that the product (σ ·τ) corresponds to the composition between functors τ and σ; while the
coproduct (σ : τ) involves taking a quotient module (induced by σ), apply functor τ , and then use
the Correspondence Theorem for Modules to obtain the submodule (σ : τ)(M) of M . As regards the
join and the meet operations, these can be extended to consider an arbitrary family of preradicals.
In other words, for any family of preradicals {τα}α∈I for M an R-module,

i)
(
∨

α∈I τα
)

(M) = Σα∈I τα(M),

ii)
(
∧

α∈I τα
)

(M) = ∩α∈I τα(M).
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We denote by R-pr the collection of all preradicals on R-Mod. There is a natural partial ordering
in R-pr given by σ ≤ τ if and only if σ(M) ≤ τ(M) for each M ∈ R-Mod. This partial ordering
together with the meet and join operations make of R-pr a big lattice. 3

We close this section with the description of two particular preradicals on R-Mod. Let M be an
R-module and let N be a submodule of M . On the one hand, we define the preradical αMN which
evaluated in a K ∈ R-Mod is

αMN (K) =
∑

{f(N) | f : M −→ K}.

Observe that f(N) is a submodule of K for each M
f

−→ K. On the other hand, we define the
preradical ωMN which evaluated in K ∈ R-Mod is

ωMN (K) = ∩{f−1(N) | f : K −→M}.

Notice here that f−1(N) is a submodule of K, for every f : K −→M .

3 Preradicals in the Category of Flows

In this section we will show that each preradical on R-Mod induces a preradical on the category of
flows FlowR-Mod and viceversa. We start by noticing that, given a flow C

η
−→ C and a preradical

σ on R-Mod, the diagram

C
η // C

σ(C)
η|σ(C) //

?�

ι

OO

σ(C)
� ?

ι

OO

commutes in R-Mod. This in turn implies that η |σ(C): σ(C) −→ σ(C) is an endomorphism in
R-Mod, and thus the pair (σ(C), η |σ(C)) is an object in FlowR-Mod. Furthermore, we have that
(

σ(C), η |σ(C)

)

together with the inclusion map ι defines a subobject of the flow object (C, η) in
FlowR-Mod.

Proposition 3.1. Let σ be a preradical on R-Mod, and let FlowR-Mod be the category of flows
associated to R-Mod. Then σ induces a preradical σ̄ on FlowR-Mod in the following way: σ̄ assigns

to each object (C, η) the subobject (σ(C), η|σ(C)
), and assigns to each flow morphism (C, η)

f
−→ (D,µ)

the flow morphism σ(f) given by

σ(f) : (σ(C), η|σ(C)
) −→ (σ(D), µ|σ(D)

)

where σ(f) = f|σ(C)
.

Proof. Let σ be a preradical on R-Mod, and let (C, η) and (D,µ) be objects in FlowR-Mod with

(C, η)
f

−→ (D,µ) a flow morphism. For the sake of this prove, we will denote (σ(C), η|σ(C)
) by

(σ(C), η|) when the context allows no confusion. Hence, we will show that

(C, η)
f // (D,µ)

(σ(C), η|)
f |σ(C) //

ι

OO

(σ(D), µ|)

ι

OO

3A big lattice is a class (not necessarily a set) having joins and meets for arbitrary families (indexed by
a class) of elements
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is a commutative diagram in FlowC .
As we noticed previously, as η : C −→ C and µ : D −→ D are both endomorphisms in R-Mod,

then we have the following commutative diagrams

C
η // C

σ(C)
η|σ(C) //

ι

OO

σ(C)

ι

OO and D
µ // D

σ(D)
µ|σ(D)//

ι

OO

σ(D).

ι

OO

From each of these diagrams we infer that (σ(C), η |σ(C)) and (σ(D), µ|σ(D)) are subobjects of (C, η)
and (D,µ) respectively. Thus, in order to show that σ induces a preradical in FlowC , it suffices to
prove that f |σ(C) is a flow morphisms from (σ(C), η |σ(C)) to (σ(D), µ|σ(D)).

On the one hand, since σ is a preradical on R-Mod and f : C −→ D is a morphism in R-
Mod, then f |σ(C) : σ(C) −→ σ(D) is also a morphism in R-Mod. On the other hand, for the flow
morphisms f : (C, η) −→ (D,µ) we have the commutative diagram

C
η //

f
��

C

f
��

D
µ // D

from which we obtain that f ◦ η = µ ◦ f . Therefore, when restricted to σ(C) we get the following
commutative diagram

σ(C)
η|σ(C) //

f |σ(C)

��

σ(C)

f |σ(C)

��
σ(D)

µ|σ(D)// σ(D),

which shows that f |σ(C) is a flow morphism between the objects (σ(C), η |σ(C)) and (σ(D), µ|σ(D))
in FlowR-Mod.

We will now describe the induced preradicals on FlowR-Mod that correspond to the α and ω
preradicals on R-Mod.

Proposition 3.2. Let (M,η) be an object in FlowR-Mod and let (N, η|N ) be a subobject of (M,η).
Then, for any (K,µ) in FlowR-Mod

ᾱ
(M,η)
(N,η|N )(K,µ) =

(
∑

f

f(N), µ|
)

defines a preradical on FlowR-Mod.

Here the sum is taken over all flow morphisms (M,η)
f

−→ (K,µ).

Proof. Let (M,η) be an object in FlowR-Mod and let (N, η|N ) be a subobject of (M,η). Before we
start with the proof, we will notice that

(
∑

f

f(N), µ|
)

defines a subobject of (K,µ). For any flow

morphism f : (M,η) −→ (K,µ) we have a commutative diagram

M
η //

f
��

M

f
��

K
µ // K

in R-Mod, from which it follows that

8



µ(f(N)) = (µ ◦ f)(N) = (f ◦ η)(N) ⊆ f(N).

Considering the above, we have a commutative diagram

f(N)
µ| //

_�

ι

��

f(N)
_�

ι

��
K

µ // K,

which implies that (f(N), µ|f(N)
) is a subobject of (K,µ). When considering all flow morphisms

f : (M,η) −→ (K,µ), the latter argument can also be apply to
∑

f

f(N), as one also has that

µ
(
∑

f

f(N)
)

⊆
∑

f

f(N). Therefore, we can say that
(
∑

f

f(N), µ|Σ
)

is a subobject of (K,µ) in

FlowR-Mod.

Now, let (K,µ)
h

−→ (K ′, µ′) be a flow morphism. On the one hand, observe that for any
flow morphisms f : (M,η) −→ (K,µ), the composition (h ◦ f) : (M,η) −→ (K ′, µ′) is also a flow
morphisms. Hence,

h
({

∑

f

f(N) | f : M −→ K in FlowR-Mod

})

=
{

∑

f

(h ◦ f)(N) | f : M −→ K in FlowR-Mod

}

⊆
{

∑

f ′

f ′(N) | f ′ : M −→ K ′ in FlowR-Mod

}

.

On the other hand, since h is a flow morphisms, we have the commutative diagram

K
µ //

h
��

K

h
��

K ′ µ′ // K ′,

which evaluated in
∑

f

f(N) induces the commutative diagram

∑

f

f(N)
µ| //

h|

��

∑

f

f(N)

h|

��
∑

f ′
f ′(N)

µ′
| //

∑

f ′
f ′(N)

in R-Mod. This shows that h| :
(

∑

f

f(N), µ|

)

−→
(

∑

f

f ′(N), µ′|

)

is a flow morphism which makes

(K,µ)
h // (K ′, µ′)

ᾱ
(M,η)
(N,η|N )

(K,µ)

� ?

ι

OO

h| // ᾱ
(M,η)
(N,η|N )

(K ′, µ′)

� ?

ι

OO

9



a commutative diagram in FlowR-Mod. Therefore, ᾱ
(M,η)
(N,η|N ) is a preradical on FlowR-Mod.

Proposition 3.3. Let (M,η) be an object in FlowR-Mod and (N, η|N ) a subobject of (M,η). Then,
for any (K,µ) in FlowR-Mod

ω̄
(M,η)
(N,η|N )(K,µ) =

(

∩
f
f−1(N), µ|

)

defines a preradical on FlowR-Mod.
Here the intersection is taken over all flow morphisms f : (K,µ) −→ (M,η).

Proof. Let (M,η) be an object in FlowR-Mod and (N, η|N ) a subobject of (M,η). We will first
notice that, for each flow morphism f : (K,µ) −→ (M,η) the pair

(

f−1(N), µ|
)

defines a subobject
of (K,µ). For any flow morphism f : (K,µ) −→ (M,η), we get a commutative diagram in R-Mod
of the form

K
µ //

f
��

K

f
��

M
η //M.

If we take into consideration the submodule f−1(N) ⊆ K, then we have that

f
(

µ(f−1(N))
)

= (f ◦ µ)(f−1(N)) = (η ◦ f)(f−1(N))

= η
(

f(f−1(N))
)

⊆ η(N) ⊆ N,
(1)

where the last subset relation follows from the fact that (N, η|N ) is an object in FlowR-Mod. Thus,
equation (1) implies that µ(f−1(N)) ⊆ f−1(N), and so

f−1(N)
µ| //

_�

ι

��

f−1(N)
_�

ι

��
K

µ // K

is a commutative diagram in R-Mod. This shows that (f−1(N), µ|) defines a subobject of (K,µ).
Now, when considering all flow morphisms f : (K,µ) −→ (M,η), for the submodule ∩

f
f−1(N) of

K we also have that µ
(

∩
f
f−1(N)

)

⊆ ∩
f
f−1(N). Hence, we can say that

(

∩
f
f−1(N), µ|

)

defines a

subobject of (K,µ).

Let (K,µ)
h

−→ (K ′, µ′) be a flow morphism. On the one hand, observe that for any flow
morphism f ′ : (K ′, µ′) −→ (M,η) the composition (f ′ ◦ h) : (K,µ) −→ (M,η) is also a flow
morphisms. With this in mind, we have that

{

∩
f
f−1(N) | (K,µ)

f
−→ (M,η) in FlowR-Mod

}

⊆
{

∩
f ′

(f ′ ◦ h)−1(N) | (K ′, µ′)
f ′

−→ (M,η) in FlowR-Mod

}

=
{

∩
f ′
h−1(f ′−1(N)) | (K ′, µ′)

f ′

−→ (M,η) in FlowR-Mod

}

= h−1
({

∩
f ′
f ′−1(N)|(K ′, µ′)

f ′

−→ (M,η) in FlowR-Mod

})

,
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from which we deduce that

h
({

∩
f
f−1(N) | (K,µ)

f
−→ (M,η) in FlowR-Mod

})

⊆
{

∩ f ′−1(N)
f ′

|(K ′, µ′)
f ′

−→ (M,η) in FlowR-Mod

}

.

On the other hand, since h is a flow morphism, we have the commutative diagram

K
µ //

h
��

K

h
��

K ′ µ′ // K ′

in R-Mod. This diagram, when restricted to ∩
f
f−1(N), induces the commutative diagram

∩
f
f−1(N)

µ| //

h|

��

∩
f
f−1(N)

h|

��
∩
f ′
f ′−1(N)

µ′
| // ∩

f ′
f ′−1(N).

The latter shows that h| :
(

∩
f
f−1(N), µ|

)

−→
(

∩
f ′
f ′−1(N), µ′|

)

is a flow morphism which makes

(K,µ)
h // (K ′, µ′)

ω̄
(M,η)
(N,η|N )(K,µ)

?�

ι

OO

h| // ω̄
(M,η)
(N,η|N )(K

′, µ′)
?�

ι

OO

a commutative diagram in FlowR-Mod. Therefore, ω̄
(M,η)
(N,η|N ) is a preradical on FlowR-Mod.

We will denote by FlowR-pr the collection of all preradicals on FlowR-Mod. As in the case of
R-pr, we can define a partial order on FlowR-pr as follows: given σ̄, τ̄ ∈ FlowR-pr, we say that
σ̄ � τ̄ if and only if σ̄(M,η) is a subobject of τ̄(M,η), for each (M,η) ∈ FlowR-Mod. Observe that
by Remark 1, the latter condition amounts to saying that U

(

σ(M,η)
)

is a subobject of U
(

τ(M,η)
)

in R-Mod. Thus, in this case we might assume that U
(

σ(M,η)
)

is a submodule of U
(

τ(M,η)
)

.
As we next see, the assignment defined on Proposition 3.1 is injective and order preserving.

Proposition 3.4. Let φ : R-pr −→ FlowR-pr be the assignment defined by σ 7−→ σ as in Proposi-
tion 3.1. Then φ is order preserving and an object-injective assignment.

Proof. Let σ, τ ∈ R-pr with σ ≤ τ , and let φ(σ) = σ and φ(τ) = τ be their respective preradicals
on FlowR-pr. As σ ≤ τ in R-pr, then σ(M) ≤ τ(M) for every R-module M . Moreover, if for any
endomorphism η : M −→ M we denote by σ(M,η) = (σ(M), η|) and τ(M,η) = (τ(M), η|), then
the commutative diagram

σ(M)
η| //

� _

ι

��

σ(M)
� _

ι

��
τ(M)

η| // τ(M)

(2)

11



in R-Mod implies that (τ(M), η|) is a subobject of (σ(M), η|) in FlowR-pr. Thus, σ � τ .
For the second statement, suppose that σ, τ ∈ R-pr are such that

σ = φ(σ) = φ(τ) = τ .

Then for any object (M,η) ∈ FlowR-Mod we have that

(σ(M), η|) = σ(M,η) = τ(M,η) = (τ(M), η|),

which in turn implies that σ(M) = τ(M). Since this happens for any (M,η) ∈ FlowR-Mod, we
can infer that σ(M) = τ(M) for all M ∈ R-Mod. Therefore, σ = τ in R-pr, and thus, φ is an
object-injective assignment.

Next we show that every preradical on FlowR-pr induces a preradical in R-pr. This induced
preradical is obtained via the forgetful functor U together with the embedding functor E. Before we
begin with the proof, note that for any M ∈ R-Mod one can consider the object E(M) = (M, IdM )
in FlowR-Mod, and then evaluate any preradical σ ∈ FlowR-pr on (M, IdM ). This way we will get
a subobject σ(M, IdM ) = (M ′, IdM ′) of (M, IdM ). Also observe that, by the way subobjects are

defined in FlowR-Mod, we can assume that M ′ ι
→֒M , with which the following diagram

M ′
IdM′ //

� _

ι

��

M ′
� _

ι

��
M

IdM //M

(3)

commutes in R-Mod.

Proposition 3.5. Each preradical σ̄ on FlowR-Mod induces a preradical σ on R-Mod. This pre-
radical is given by σ := (U ◦ σ ◦ E) and satisfies that, for each M ∈ R-Mod,

σ(M) =M ′ where M ′ is such that σ̄(M, IdM ) = (M ′, IdM ′).

Proof. Let σ̄ be a preradical on FlowR-Mod and let us take M,L ∈ R-Mod with g : M −→ L an
R-morphism. For the objects M and L in R-Mod along with the morphism g : M −→ L, their
image under the embedding functor E : R-Mod −→ FlowR-Mod is given by the objects (M, IdM )
and (L, IdL) together with the flow morphism g : (M, IdM ) −→ (L, IdL). Thus, when applying the
preradical σ̄ ∈ FlowR-pr, we obtain the commutative diagram

(M, IdM )
g // (L, IdL)

(M ′, IdM ′)
g| //

?�

ι

OO

(L′, IdL′)
?�

ι

OO
(*)

in FlowR-Mod. Here σ̄(M, IdM ) = (M ′, IdM ′) and σ̄(L, IdL) = (L′, IdL′). Also, observe that

(M ′, IdM ′)
g|
−→ (L′, IdL′) is a flow morphism, which implies that g| : M

′ −→ L′ is a morphisms in
R-Mod that makes

M ′
IdM′ //

g|
��

M ′

g|
��

L′
IdL′ // L′

12



a commutative diagram. Finally, as all functors preserve commutative diagram, if we apply functor
U to diagram (*) we obtain the commutative diagram in R-Mod:

M
g // L

M ′
g| //

?�

ι

OO

L′.
?�

ι

OO

Therefore, σ : = (U ◦ σ ◦ E) defined on objects as σ(M) = M ′ and on morphisms as σ(g) = g|,
defines a preradical on R-Mod.

Corollary 3.6. The assignment FlowR-pr −→ R-pr given by σ 7−→ σ is order preserving.

Proof. Let σ and τ be preradicals on FlowR-Mod such that σ � τ . Thus, for every M ∈ R-Mod
one has that σ(M, IdM ) is a subobject of τ(M, IdM ). As noted before, this is equivalent to saying
that U

(

σ(M, IdM )
)

is a subobject of U
(

τ(M, IdM )
)

in R-Mod, which in turn is equivalent to
U
(

σ(M, IdM )
)

≤ U
(

τ(M, IdM )
)

. Therefore, as E(M) = (M, IdM ) we have that

σ(M) = (U ◦ σ ◦ E)(M) = U
(

σ(M, IdM )
)

≤ U
(

τ(M, IdM )
)

= (U ◦ τ ◦ E)(M) = τ(M).

Thus, σ(M) ≤ τ(M) for all M ∈ R-Mod, and therefore σ ≤ τ in R-pr.

4 Entropy for preradicals

We start this section recalling the notion of an invariant function on R-Mod along with some notation
and basic facts which lead to the definition of entropy for endomorphisms and objects in R-Mod.
Afterwards, we will define entropy for preradicals on R-Mod after for preradicals on FlowR-pr as
a consequence. For a complete introduction to invariants and entropy functions on R-Mod, see [4],
[5],[6],[8], [9] and [15].

Definition 4.1. [8][Definition 1.1] An invariant in R-Mod is a function i : R-Mod −→ R≥0 ∪∞
such that i(0) = 0 and i(M) = i(M ′) whenever M and M ′ are isomorphic objects in R-Mod.

From now on we will consider invariants with the two following conditions:

(a) i(M1 +M2) ≤ i(M1) + i(M2) for all submodules M1,M2 of M .

(b) i(M/N) ≤ i(M) for any submodule N of M .

An invariant i satisfying (a) and (b) is called a subadditive invariant.
Let (M,η) be an object in FlowR-Mod and let L be a subset of M . For any positive integer n,

we define the n-th η-trajectory of L as

Tn(L, η) = L+ η(L) + · · ·+ ηn−1(L).

When L happens to be a submodule of M , then Tn(L, η) is in fact a submodule of M . Furthermore,
the sum

∑

n≥1
Tn(L, η) =

∑

n≥0
ηn(L)

13



defines the submodule of M named the η-trajectory of L, which is denoted by T (L, η).
Let us now suppose that i is a subadditive invariant on R-Mod. Then, for every submodule

L of M , with i(L) < ∞, one has that i
(

Tn(L, η)
)

< ∞ for every n ≥ 1. Indeed, by proceeding

with induction over n, we will start considering the base case n = 2 since n = 1 is trivial. As

η(L) ∼=
(

L/ker(η)
)

and i is a subadditive invariant, we have that

i
(

η(L)
)

= i
(

L/ker(η)
)

≤ i(L) <∞.

Hence,

i
(

T2(L, η)
)

= i
(

L+ η(L)
)

≤ i(L) + η(L) <∞.

Assume now that the inductive hypothesis is valid for n > 2. Thus, since ηn(L) ∼=
(

L/ker(ηn)
)

we

have that

i
(

ηn(L)
)

= i
(

L/ker(ηn)
)

≤ i(L) <∞.

Therefore, as

Tn+1(L, η) = L+ η(L) + · · · + ηn−1(L) + ηn(L) = Tn(L, η) + ηn(L),

by the inductive hypothesis we have that

i
(

Tn+1(L, η)
)

= i
(

Tn(L, η) + ηn(L)
)

≤ i
(

Tn(L, η)
)

+ i
(

ηn(L)
)

<∞.

We now observe that, for every subadditive invariant i and any submodule L of C, one has

Tn+m(C, η) = L+ η(L) + · · ·+ ηn−1(L) + ηn(L) + · · · + ηn+m−1(L)

= Tn(L, η) + ηn(L) + · · ·+ ηn+m−1(L)

= Tn(L, η) + ηn
(

L+ η(L) + · · ·+ ηm−1(L)
)

= Tn(L, η) + ηn
(

Tm(L, η)
)

.

Since i is a subadditive invariant, it follows that

i
(

Tn+m(L, η)
)

= i
(

Tn(L, η) + ηn
(

Tm(L, η)
)

)

≤ i
(

Tn(L, η)
)

+ i
(

ηn
(

Tm(L, η)
)

)

≤ i
(

Tn(L, η)
)

+ i
(

Tm(L, η)
)

,

where the last relation follows from (b) and the fact that ηn
(

Tm(L, η)
)

∼=
(

Tm(L, η)/ker(η
n)
)

.

Remark 2. If L is a submodule of M such that i(L) < ∞, then every endomorphism η of M
induces a sequence of positive reals {ai}n∈N such that an+m ≤ an + am.

We lastly note that every sequence of positive reals {ai}n∈N such that an+m ≤ an+am converges
in R. Indeed, as a2 ≤ a1 + a1 = 2 · a1 by mathematical induction we have that ak ≤ k · a1 for all
k ≥ 1. This in turn implies that the sequence {ak

k
|k ≥ 1} is bounded above by a1 and bounded

below by 0. Therefore, inf{ak
k
|k ≥ 1} exist. Furthermore, one exactly has lim

n→∞

an
n

coincides with

inf{ak
k
|k ≥ 1} as the next Proposition states:

14



Proposition 4.2. [18, Exercise 6.5] Let {ai}i∈N be a sequence of positive real numbers such that
an+m ≤ an + am for all n,m ∈ N. Then the sequence {ak

k
|k ≥ 1} converges to inf{ak

k
|k ≥ 1}.

The above proposition is the prelude that allows giving a formal definition of i-entropy for each
invariant i on R-Mod. In doing this, one must consider the collection of submodules M ′ of M such
that i(M ′) <∞, which is denoted by

Fi(M) : = {M ′ ≤M | i(M ′) <∞}.

Definition 4.3. [9, Definition 5.25] Let i be a subadditive invariant, M an R-module and M
η

−→M
an endomorphism. The algebraic i-entropy of η with respect to M ′ ∈ Fi(M) is

Hi(M
′, η) : = Lim

n→∞

i(Tn(M
′, η))

n
.

The algebraic i-entropy of η is

enti(η) : = sup
{

Hi(M
′, η) |M ′ ∈ Fi(M)

}

.

Definition 4.4. [15, Definition 3] Let i be a subadditive invariant of R-Mod and let End(M)
denote the set of all endomorphism of the module M ∈ R-Mod. The i-entropy of M is

enti(M) : = sup
{

enti(η) | η ∈ End(M)
}

= sup
η∈End(M)

{

enti(η)
}

.

We now present the definition of i-entropy for preradicals on R-Mod:

Definition 4.5. Let i be a subadditive invariant on R-Mod, and let σ ∈ R-pr. If M ∈ R-Mod,
then the algebraic i-entropy of σ with respect to M is given by

enti(σ)|M : = sup
{

Hi((M
′, η) |M ′ ∈ Fi(σ(M)) and η ∈ End(M)

}

= sup
η∈End(M)

{

Hi(M
′, η) |M ′ ∈ Fi(σ(M))

}

where Hi(M
′, η) = limn→∞

i(Tn(M ′,η))
n

.

Remark 3. If i is an invariant on R-Mod, then for every preradical σ ∈ R-pr and for every
M ∈ R-Mod one has that

enti(σ)|M ≤R enti(σ(M)).

Proposition 4.6. Let i be an invariant on R-Mod. If σ, τ ∈ R-pr are such that σ ≤ τ , then for
any M ∈ R-Mod, one has

enti(σ)|M ≤R enti(τ)|M .

Proof. Let M ∈ R-Mod. As σ(M) ≤ τ(M), then for any endomorphism M
η

−→ M one has that
Fi(σ(M)) ⊆ Fi(τ(M)). Hence,

{

Hi(M
′, η) | M ′ ∈ Fi(σ(M))

}

≤R

{

Hi(M
′, η) | M ′ ∈ Fi(τ(M))

}

,

and thus

sup
η∈End(M)

{

Hi(M
′, η) | M ′ ∈ Fi(σ(M))

}

≤R sup
η∈End(M)

{

Hi(M
′, η) | M ′ ∈ Fi(τ(M))

}

.

Therefore, enti(σ)|M ≤R enti(τ)|M .
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A well known property in the big lattice R-pr that relates the four basic operations between
preradicals is: given σ, τ ∈ R-pr one always has that

(σ · τ) ≤ (σ ∧ τ) ≤ (σ ∨ τ) ≤ (σ : τ).

As a straightforward result, we have the next

Proposition 4.7. Let σ, τ ∈ R-pr and M ∈ R-Mod. Then

enti(σ · τ)|M ≤R enti(σ ∧ τ)|M ≤R enti(σ ∨ τ)|M ≤R enti(σ : τ)|M .

Next we display two examples of invariants for a fix preradical on R-Mod.

Example. Let R = Z -so the category R-Mod coincides with the category of abelian groups Ab-
and let us consider the preradical Tor on Z-Mod which assigns to each abelian group M its torsion
subgroup Tor(M), this is, its subgroup consisting of all elements of finite order.

On the other hand, we can consider the algebraic entropy on Z-Mod defined by the invariant
i : Z-Mod −→ Z-Mod, where i(M) = |log(M)| whenever M is finite, otherwise i(M) = ∞. We
recall that if F(M) denotes all finite subgroups of the abelian group M , then for any endomorphism

M
η

−→M and any L ∈ F(M), we define for each n ∈ N

Hn(L, η) = log|Tn(L, η)|.

In other words, Hn(L, η) is the logarithm of the n-th trajectory. Thus, the algebraic entropy of η
with respect to the finite subgroup L is

H(L, η) = limn→∞
log|(Tn(L,η))|

n
,

and hence, the algebraic entropy of η is

enti(η) = sup
{

H(L, η) | L ∈ F(M)
}

.

Taking the latter into consideration, we define the algebraic entropy of M as

enti(M) = sup
{

enti(η)|η ∈ End(M)
}

.

Let us define M = ⊕i∈N Zip, where Zip denotes the cyclic group of order p, for each i ∈ N. Note
that, as M is clearly a torsion group, we have that Tor(M) = M . Furthermore, if β : M −→ M ,
defined by

β(x1, x2, x3, · · · ) 7−→ (0, x1, x2, x3, · · · )

is the Bernoulli shift endomorphism, then one has that ent(β) = |log(p)| and ent(Tor) |M> 0
as a consequence. Indeed, if we take the subgroup Z1

p of M , for each n ∈ N we have that

Hn(Z
1
p, β) = log| ⊕i≤n Zip| = log(|pn|) = n× log(p).

Hence,

H(Z1
p,β)n
n

= log(p)

for all n ∈ N. Thus, H(Z1
p, β) = log(p), which in turn implies that enti(β) ≥ log(p). Moreover,

since the β-trajectory of the finite subgroup Z1
p covers M , then it also covers any other β-trajectory

for any finite subgroup F of M . Consequently, we have that H(F, β) ≤ H(Z1
p, β), and therefore
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enti(β) = Hi(Z
1
p, β) = log(p).

Observe that the latter implies that enti(Tor) |M> 0.
On the other hand, if we consider the rank invariant on Z-Mod we will get that entrk(Tor)|M =

0 for all M ∈ Z-Mod. Recall that the rank invariant is defined as follows: for each M ∈ Z-Mod,
rk(M) = dimQ(M ⊗Q) when this dimension is finite, otherwise we set rk(M) = ∞. Thus, we have
that rk(M) = 0 for any torsion group M . This in turn implies that

entrk(Tor)|M = 0

for all M ∈ Z-Mod.

We will now define the i-entropy for preradicals on FlowR-Mod object-wise, this is, in terms of
flows, and then we will prove some correlations between the entropy of a preradical on R-Mod with
the entropy of its corresponding preradical on the category of flows FlowR-Mod.

Definition 4.8. Let i be a subadditive invariant on R-Mod and let σ be a preradical on FlowR-pr.
By denoting σ(M,η) = (σ(M), η|) for each flow object (M,η) ∈ FlowR-Mod, we have that the
algebraic i-entropy of σ with respect to η and M ′ ∈ Fi(σ(M)) is

Hi(M
′, η) : = lim

n→∞

i(Tn(M
′, η))

n
.

The algebraic i-entropy of σ regarding to the object (M,η) ∈ FlowR-Mod is

enti(σ)(M,η) : = sup
{

Hi(M
′, η) |M ′ ∈ Fi(σ(M))

}

.

In other words, the algebraic i-entropy of σ, with respect to the flow object (M,η), is the
same as the algebraic i-entropy of the endomorphism obtained by restricting η to σ(M), this is,
η| : σ(M) −→ σ(M). By how ψ : R-pr −→ FlowR-pr is defined, we have the straightforward result:

Proposition 4.9. Let σ, τ ∈ R-pr and (M,η) ∈ FlowR-Mod. If σ and τ̄ denote the preradicals
induced by σ and τ , respectively, via the assignment ψ : R-pr −→ FlowR-pr, then for each invariant
i on R-Mod

• The i-entropy for (σ ∧ τ) with respect to (M,η) is

enti(σ ∧ τ )(M,η) = sup
{

Hi(M
′, η) |M ′ ∈ Fi

(

(σ ∧ τ)(M)
)

}

,

that is, where M ′ ≤ σ(M) ∩ τ(M) and i(M ′) <∞.

• The i-entropy for (σ ∨ τ) with respect to (M,η) is

enti(σ ∨ τ )(M,η) = sup
{

Hi(M
′, η) |M ′ ∈ Fi

(

(σ ∨ τ)(M)
)

}

,

that is, where M ′ ≤ σ(M) + τ(M) and i(M ′) <∞.

• The i-entropy for (σ · τ) with respect to (M,η) is

enti(σ · τ )(M,η) = sup
{

Hi(M
′, η) |M ′ ∈ Fi

(

(σ · τ)(M)
)

}

,

that is, M ′ ≤ σ(τ(M)) and where i(M ′) <∞.
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• The i-entropy for (σ : τ) with respect to (M,η) is

enti(σ : τ )(M,η) = sup
{

Hi(M
′, η) |M ′ ∈ Fi

(

(σ : τ)(M)
)

}

,

that is, where M ′ ≤ τ(M/σ(M)) and i(M ′) <∞.

Proposition 4.10. Let σ, τ ∈ R-pr and let (M,η) ∈ FlowR-Mod. Then, we have that

enti(σ · τ)(M,η) ≤R enti(σ ∧ τ)(M,η) ≤R enti(σ ∨ τ)(M,η) ≤R enti(σ : τ)(M,η).

where σ represents the induced preradical by σ, via the assignment φ.

Proof. Let σ, τ ∈ R-pr and let (M,η) ∈ FlowR-Mod.

(i) Since (σ · τ)(M) ≤ (σ ∧ τ)(M) for all M ∈ R-Mod, it follows that

Fi
(

(σ · τ)(M)
)

⊆ Fi
(

(σ ∧ τ)(M)
)

.

The latter in turn implies that

{

Hi(M
′, η) |M ′ ∈ Fi

(

(σ · τ)(M)
)

}

≤R

{

Hi(M
′, η) |M ′ ∈ Fi

(

(σ ∧ τ)(M)
)

}

.

Therefore,

sup
{

Hi(M
′, η) |M ′ ∈ Fi

(

(σ · τ)(M)
)

}

≤R sup
{

Hi(M
′, η) |M ′ ∈ Fi

(

(σ ∧ τ)(M)
)

}

.

Hence, enti(σ · τ)(M,η) ≤R enti(σ ∧ τ)(M,η).

(ii) Since (σ ∧ τ)(M) ≤ (σ ∨ τ)(M) for all M ∈ R-Mod, then we have that

Fi
(

(σ ∧ τ)(M)
)

⊆ Fi
(

(σ ∨ τ)(M)
)

.

Thus,

{

Hi(M
′, η) |M ′ ∈ Fi

(

(σ ∧ τ)(M)
)

}

≤R

{

Hi(M
′, η) |M ′ ∈ Fi

(

(σ ∨ τ)(M)
)

}

,

which implies that

sup
{

Hi(M
′, η) |M ′ ∈ Fi

(

(σ ∧ τ)(M)
)

}

≤R sup
{

Hi(M
′, η) |M ′ ∈ Fi

(

(σ ∨ τ)(M)
)

}

.

Therefore, enti(σ ∧ τ)(M,η) ≤R enti(σ ∨ τ)(M,η)

(iii) Since (σ ∨ τ)(M) ≤ (σ : τ)(M), for all M ∈ R-Mod, then

Fi
(

(σ ∨ τ)(M)
)

⊆ Fi
(

(σ : τ)(M)
)

.

Thus,

{

Hi(M
′, η) |M ′ ∈ Fi

(

(σ ∨ τ)(M)
)

}

≤R

{

Hi(M
′, η) |M ′ ∈ Fi

(

(σ : τ)(M)
)

}

,
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which in turn implies

sup
{

Hi(M
′, η) |M ′ ∈ Fi

(

(σ ∨ τ)(M)
)

}

≤R sup
{

Hi(M
′, η) |M ′ ∈ Fi

(

(σ : τ)(M)
)

}

.

Hence, enti(σ ∨ τ)(M,η) ≤R enti(σ : τ)(M,η).

We close this subsection with a result that relates the algebraic entropy log defined on categories
of the form S-Mod and R-Mod, whenever there is a ring homomorphism between the base rings.
With this in mind, we will show how the entropy values for preradicals on S-Mod relate to the
entropy values of preradicals on R-Mod, whenever the ring homomorphism t : R −→ S is surjective.
Let us then suppose that t : R −→ S denotes a ring homomorphism. Then each S-module M admits
an R-module structure via the homomorphism t. Indeed, given M ∈ S-Mod we have that t induces
an action on M - as an R-module-, given by the correspondence rule r · m := t(r) · m, for any
r ∈ R and m ∈ M . Moreover, t induces a functor Ft : S-Mod −→ R-Mod that assigns to each
M ∈ S-Mod, the R-module Ft(M) = M , and assigns to each morphism f : M −→ M ′ in S-Mod,
the R-morphism Ft(f) = f .

Proposition 4.11. Let logs and logr be the invariant log() defined on S-Mod and R-Mod respec-
tively. If t : R −→ S is a ring homomorphism, then for any M ∈ S-Mod and its respective R-module
Ft(M), one has that

entlogs(M) ≤ entlogr(Ft(M)).

Proof. Let t : R −→ S be a ring homomorphism. For the sake of clarity, we will denote an S-module
by MS and to its image under functor Ft by MR. We first note that, if LS ∈ Flogs(MS) then LR ∈
Flogr(MR). Indeed, the functor Ft send the inclusion map ιS : LS −→ MS into the inclusion map
iR : LR −→MR in R-Mod. Hence, as LS ∈ Flogs(MS) then log(LR) = Log|L| = log(LS) <∞, and
thus LR ∈ Flogr(MR) for each LS ∈ Flogs(MS). Consequently, we have that for each endomorphism
η :MS −→MS and each LS ∈ Flogs(MS) one has that

Tn(LS , η) = LS + η(L)S + · · ·+ ηn−1(L)S

= LR + η(L)R + · · ·+ ηn−1(L)R = Tn(LR, ηR),

where ηR denotes the endomorphism ηR : MR −→ MR resulting from evaluating functor Ft on η.
Considering the above we have that

Hlogs(LS , η) = limn→∞
log|(Tn(LS ,η))|

n
= limn→∞

log|(Tn(LR,ηR))|
n

= Hlogr(LR, ηR),

and thus,

entlogs(η) = sup{Hlogs(LS , η) | LS ∈ Flogs(MS)}

= sup{Hlogr(LR, ηR) | LR ∈ Flogr(MR)}

≤R sup{Hlogr(N, ηR) | N ∈ Flogr(MR)} = entlogr(ηR).

Therefore,
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entlogs(MS) = sup{entlogs(η) | η ∈ EndS(MS)}

≤R sup{entlogr(ηR) | ηR ∈ EndR(MR)}

≤R sup{entlogr(µ) | µ ∈ EndR(MR)} = entlogr(MR).

In case that t : R −→ S is a surjective ring homomorphism, one always has that the induced
functor Ft : S-Mod −→ R-Mod is full ([10, Theorem 2.5]). Furthermore, as Ft respects inclu-
sion maps and is injective on objects, by [10, Theorem 2.4] we have that Ft induces an injective
assignment φt : S-pr −→ R-pr that is order preserving. This assignment is given by

φt(σ) =
∨

M∈S-Mod

αMσ(M)

where αM
σ(M) denotes the alpha preradical on R-pr defined by the objects σ(M) = Ft(σ(M)) and

M = Ft(M). With these facts in mind, we have the next

Proposition 4.12. Let logs and logr be the invariant log() defined on S-Mod and R-Mod respec-
tively. If t : R −→ S is a ring epimorphism, then

entlogs(σ)|MS
≤R entlogr(φt(σ))|MR

for each preradical σ ∈ S-pr.
Here, MS ∈ S-Mod and MR is the image of MS under functor Ft.

Proof. Let MS ∈ S-Mod and let MR = Ft(MS). In order to avoid confusion, we will denote
σ(MS) = σ(M)S and thus, we denote σ(M)R to its corresponding R-module under functor Ft.
Now, for σ(M)R ≤MR one has that

αMR

σ(MR) ≤
∨

M∈S-Mod

αM
σ(M).

Further, we have that αMR

σ(M)R
(MR) = σ(M)R. Therefore, since M ′

S ∈ Flogs(σ(MS)) implies that

M ′
R ∈ Flogr(α

MR

σ(MR)(MR)) ⊆ Flogr

(

(
∨

M∈S-Mod

αM
σ(M)

)

(MR)
)

, we then have that

entlogs(σ)|MS
≤R entlogr(α

MR

σ(MR))|MR
≤R entlogr(φt(σ))|MR

4.1 Functorial entropy between L-pr and LM-pr

We will now use the notion of functorial entropy described in [9] to define entropy for lattice prerad-
icals (See [3]). In doing this, we will show some results that relates entropy for lattice preradicals
with entropy for module preradicals.

It is well known that each R-module M induces a complete modular lattice L(M), whose
elements correspond to all submodules N of M . The meet and the join operations in L(M) (
denoted by ∧ and ∨ respectively) are given by the intersection and the sum of submodules. Further,
each L(M) is bounded above by M and below by {0}. As the authors show in [2], the collection of
all bounded modular lattices are the objects of a category, denoted by LM, whose morphisms are
called linear morphisms: these summon the property of having a kernel ker(η) for every morphisms
η :M −→M ′ in R-mod, so that the First Isomorphisms Theorem holds; this is:
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M/ker(η) ∼= Im(η).

Moreover, for each R-morphisms M
η

−→ M ′ one can define a linear morphism L(M)
Xη
−→ L(M ′)

as follows: if N ∈ L(M) -that is, N is a submodule of M - then Xη(N) = η(N), where η(N) is
the submodule of M ′ generated by the image of N under η. The above can be summarized by
saying that, for each unital ring R, one has a functor X : R-Mod −→ LM with correspondence
M 7−→ L(M) on objects and η 7−→ Xη on morphisms. We note here that the image of the functor
X defines a non-full subcategory of LM, which we will denote by SLM. In this case, the set of
morphisms from L(M) to L(M ′) within SLM is given by the set

HomSLM

(

L(M), L(M ′)
)

=
{

Xη |M
η

−→M ′ is a morphism in R-Mod
}

.

When considering preradicals, in [3] the authors show the existence of an assignment, denoted
here by φ : LM-pr −→ R-pr, between the big lattice of lattice preradicals and the big lattice of
R-module preradicals. This assignment is given by the correspondence σ̃ 7−→ σ, where σ evaluated
in an R-module M coincides with the respective submodule obtained by evaluating σ̃ in L(M). In
other words, for any M ∈ R-Mod, we have σ(M) = X σ̃

L(M) where X σ̃
L(M) is such that σ̃(L(M)) =

X σ̃
L(M)/0

4. Lastly, as shown in [11], φ is an order preserving assignment which also respects the
join, the product and the coproduct operations.

Let us now suppose that i is a subadditive invariant on R-Mod, and let M ∈ R-Mod. As noted
before, M induces a complete modular lattice

(

L(M),∧,∨,⊆
)

. This complete modular lattice
contains the set

Fi(L(M)) = {N ∈ L(M) | i(N) <∞}.

Further, as i is an subadditive invariant, one has that

i(N1 +N2) ≤ i(N1) + i(N2) <∞.

Hence, N1 ∨N2 = N1 +N2 ∈ Fi(L(M)), and thus the tuple (Fi(L(M)),∨,⊆) defines a join semi-
lattice 5. Moreover, according to [9, Section 5], we have that the tuple (Fi(L(M)),∨,⊆, i) defines a
subadditive normed semi-lattice6.

Proposition 4.13. Let i be an invariant on R-Mod, and let η : M −→ M ′ be an R-morphism.
Then η induces a morphism Fi(η) between the join semi-lattices Fi(L(M)) and Fi(L(M

′)). This
morphism is given by

(

Fi(η)
)

(N) = η(N) for each N ∈ Fi(L(M)).

Proof. Let i be an invariant on R-Mod, and let η : M −→ M ′ be an R-morphism. We will first
see that Fi(η) : Fi(L(M)) −→ Fi(L(M

′)), with correspondence rule
(

Fi(η)
)

(N) = η(N) for each
N ∈ Fi(L(M)), is well defined. Indeed, as i is an invariant, for each N ∈ Fi(L(M)) we have that

i(η(N)) = i(N/ker(η)) ≤ i(N) <∞.

4A lattice preradical on LM assigns to each lattice L a sublattice of the form X/0. Here, we have written
X σ̃

L(M) with a capital letter to emphasize that X σ̃

L(M) defines a submodule of M .
5A semi-lattice is a set S with a binary operation ∗ which is commutative, associative, and satisfies

s ∗ s = s for all s ∈ S. In particular, any lattice L is a semi-lattice under ∨ and also under ∧.
6A normed semi-lattice is a semi-lattice S equipped with a norm i : S −→ R≥0
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Thus, i(η(N)) <∞, which implies that
(

Fi(η)
)

(N) = η(N) ∈ Fi(L(M
′)).

Now, if N1, N2 ∈ Fi(L(M)), then

(

Fi(η)
)

(N1 ∨N2) = η(N1 ∨N2) = η(N1 +N2) = η(N1) + η(N2)

=
(

Fi(η)
)

(N1) +
(

Fi(η)
)

(N2) =
(

Fi(η)
)

(N1) ∨
(

Fi(η)
)

(N2) ∈ Fi(L(M
′)).

Therefore, Fi(η) : Fi(L(M)) −→ Fi(L(M
′)) is a morphism.

In this way, we have a functor S : R-Mod −→ L†, where L† is the category whose objects are
normed join semi-lattices and whose morphisms are the contractive7 join semi-lattice morphisms.
Here S assigns to each R-module M the join semi-lattice (Fi(L(M)),∨,⊆, i), and assigns to each R-
morphism η the join semi-lattice morphism F(η). Similarly, we can define a functor F : SLM −→ L†

where F assigns to each object
(

L(M),∧,∨,⊆
)

the object (Fi(L(M)),∨,⊆, i) and assigns to each
morphism Xη the join semi-lattice morphism F(η). As we now see, the entropy for objects and en-
domorphisms within the category SLM is equivalent to that defined on objects and endomorphisms
within R-Mod:

Definition 4.14. Let i be a subadditive invariant on R-Mod, M an R-module and L(M) the com-
plete lattice of all submodules of M . If η : M −→ M is an endomorphism and Xη is the induced
endomorphism of L(M) ∈ SLM, then the algebraic i-entropy of Xη with respect to N ∈ Fi(L(M))
is

Hi(N,Xη) = limn→∞
i(Tn(N,Xη))

n
.

Hence, the algebraic i-entropy of Xη is

enti(Xη) = sup
{

Hi(N,Xη) | N ∈ Fi(L(M))
}

.

A first consequence of Definition 4.14 is that the entropy for a complete modular lattice of the
form L(M) ∈ SLM (with M ∈ R-Mod) is:

enti(L(M)) = sup
{

enti(Xη) | Xη ∈ EndSLM
(L(M))

}

= sup
{

enti(Xη) | η ∈ End(M)
}

.

Therefore, as N ∈ Fi(L(M)) if, and only if, N ∈ Fi(M) and the fact that Xη(N) = η(N), it follows
the next

Proposition 4.15. Let M ∈ R-Mod and L(M) ∈ LM. Then

enti(M) = enti(L(M)).

Furthermore, according to [9, Theorem 5.26], we have that for each endomorphism M
η

−→ M
in R-Mod,

hS(η) = enti(η) = enti(Xη) = hF ,

where hS is the functorial entropy defined by the functor S : R-Mod −→ L† and hF is the functorial
entropy defined by the functor F : SLM −→ L†.

Considering the above, we will define entropy for lattice preradicals on objects of the cate-
gory SLM, and we will show that this definition is compatible with the definition of entropy for
preradicals on R-Mod.

7These morphisms are named contractive since i(η(N)) < i(N), for all N .
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Definition 4.16. Let i be a subadditive invariant on R-Mod, M an R-module, L(M) the complete
lattice of all submodules of M , and σ̃ a lattice preradical on LM. Then the algebraic i-entropy of σ̃
with respect to L(M) ∈ SLM is

enti(σ̃)|L(M) : = sup
Xη∈EndSLM

(L(M))

{

Hi(N,Xη) | N ∈ Fi(σ̃(L(M)))
}

where Hi(N,Xη) = limn→∞
i(Tn(N,Xη))

n
.

Proposition 4.17. Let i be an invariant on R-Mod, and let φ : LM-pr −→ R-pr. If σ̃ ∈ LM-pr
and φ(σ̃) = σ denotes its induced preradical on R-pr, then given M ∈ R-Mod and L(M) ∈ SLM

one has that

enti(σ)|M = enti(σ̃)|L(M).

Proof. First observe that N ∈ Fi(σ(M)) if, and only if, N ∈ Fi(σ̃(L(M))). Indeed, by definition
of N ∈ Fi(σ(M)) one has that N is a submodule of σ(M) = X σ̃

L(M) with i(N) < ∞. Recall that

X σ̃
L(M) is such that

σ̃(L(M)) =
(

X σ̃
L(M)/0

)

.

This in turn implies that N is an element of the lattice
(

X σ̃
L(M)/0

)

, and hence N ∈ Fi(σ̃(L(M))).

Conversely, if N ∈ Fi(σ̃(L(M))) then i(N) < ∞ and N is an element of the lattice
(

X σ̃
L(M)/0

)

.

Since by definition X σ̃
L(M) = σ(M), then N ≤ σ(M) and thus, N ∈ Fi(σ(M)).

Lastly, since

Hi(N, η) = lim
n→∞

i(Tn(N, η))

n
= lim

n→∞

i(Tn(N,Xη))

n
= Hi(N,Xη),

for each endomorphism M
η

−→ M in R-Mod and its induced endomorphism L(M)
Xη
−→ L(M) in

SLM, we have that

enti(σ)|M = sup
η∈End(M)

{

Hi((N, η) | N ∈ Fi(σ(M))
}

= sup
Xη∈EndSLM

(L(M))

{

Hi(N,Xη) | N ∈ Fi(σ̃(L(M)))
}

= enti(σ̃)|L(M).

Finally, since the assignment φ : LM-pr −→ R-pr preserves the four operations between prerad-
icals (see [11, Section 8]), it is straightforward the next

Corollary 4.18. Let i be an invariant on R-Mod, and let σ̃ ∈ LM-pr with φ(σ̃) = σ ∈ R-pr its
induced preradical under the assignment φ. If M ∈ R-Mod and L(M) ∈ SLM then

(i) enti(σ̃ ∧ τ̃)|L(M) = enti(σ ∧ τ)|M

(ii) enti(σ̃ ∨ τ̃)|L(M) = enti(σ ∨ τ)|M
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(iii) enti(σ̃ · τ̃)|L(M) = enti(σ · τ)|M

(iv) enti(σ̃ : τ̃)|L(M) = enti(σ : τ)|M

Corollary 4.19. Let i be an invariant on R-Mod, and let σ̃ ∈ LM-pr with φ(σ̃) = σ ∈ R-pr its
induced preradical under the assignment φ. If M ∈ R-Mod and L(M) ∈ SLM then

enti(σ̃ · τ̃)|L(M) ≤R enti(σ̃ ∧ τ̃)|L(M) ≤R enti(σ̃ ∨ τ̃)|L(M) ≤R enti(σ̃ : τ̃)|L(M).

Proof. It follows from Corollary 4.7 and Corollary 4.18
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