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Every attempt to establish a unified-field theory must start, in my opinion,
from a group of transformations which is no less general than that of the con-
tinuous transformations of the four coordinates. For we should hardly be suc-
cessful in looking for the subsequent enlargement of the group for a theory based
on a narrower group. It is further reasonable to attempt the establishment of
a unified theory by a generalization of the relativistic theory of gravitation.
Such a generalization, which does not seem to have been discovered so far, is
described in the following.

If we speak about a unified theory we have two possible points of view, whose
distinction is essential for the following:

(1) That the field appear as a unified covariant entity. As an example I cite
the unification of the electric and the magnetic fields by the special theory of
relativity. The unification here consists in this that the entire field considered
is described as a skew-symmetric tensor. The basic group of Lorentz trans-
formations does not enable us to split this field independently of the system of
coordinates, into an electric and a magnetic one.

(2) Neither the field equations nor the Hamiltonian function can be expressed
as the sum of several invariant parts, but are formally unified entities. Also
this (weaker) criterion of uniformity is satisfied in our example of the special
relativistic description of Maxwell’s equations.

The theory we shall describe is unified according to criterion (2), but not ac-
cording to criterion (1). Such a theory is to be considered unified only in a
limited sense.

Structure of field and group

The above field is described by a tensor g with complex components. These
components shall satisfy a condition of symmetry which constitutes the natural
generalization of the condition of symmetry of the metric field of the theory
of gravitation to the complex domain, which we call “Hermitian symmetry”’:
1) gir = E .

The components are continuous functions of the four real coordinates x;, « - -, 4.
From (1) follows that the g: split according to:
Gk = S + 1 .
where sz and a,; satisfy the conditions:
Si = Sii
an = —Q, .
578
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The group shall be, as in the theory of gravitation, that of the real continuous
coordinate transformations. Relative to this group six and a. are independent
tensors. The field is therefore not unified with respect to criterion (1). On the
other hand, we shall see that criterion (2) can be satisfied in an extremely natural
manner. In this, as well as in the close connection to the relativistic theory of
gravitation, I see the formal justification for the following field theory.

To the covariant tensor g, we can associate a contravariant one ¢* uniquely
by the condition:

(2) Jrigtt = gu;g"”' = 55
where &} is the Kronecker tensor. Because of (1) the determinant:
g=lgal
isreal. Forg = |gu|=|gu|=|ga|. We choose as in the theory of gravi-

tation: ¢ < 0 because of the special character of the timelike dimension.

The infinitesimal parallel translation

We now introduce a complex quantity I';; which transforms like the corre-
sponding quantities in Riemannian geometry. In analogy to the corresponding
quantities of Riemannian geometry, the T';’; shall be Hermitian symmetric with
respect to the lower indices.

(3) Filk = I‘kl;.

Remarks: 'Yy — T is a (purely imaginary) tensor. T'; has the same law
of transformation as T, (the same holds for 3(I'/x + Ti%)). By contraction
of the tensor (T}, — T.%) we get the vector:

4) T = 3T — Tv).

From the fundamental laws it follows that here the parallel translation of a com-
plex vector is not a unique operation for given I'.  We therefore introduce the
following symbols in order to remove this indetermination:

0AY = -1, A" dx,
(5) SAL = -1/, A" dx,
648 = =31/, + T'/)A" dx, .

Corresponding symbols are introduced for the infinitesimal parallel translation
of covariant tensors as well as for covariant differentiation: e.g.:
Ay = A + AT

A = Air — ATH ete.

We now have to determine the T belonging to a given g, field by definition.
We set:

6) 0= giu = Gikit = Gik1— ok I — T -
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For the following it is essential to realize that the right side of Eq. (6) has tensor
character even if Eq. (6) is not satisfied. For the Kronecker tensor we get:

53‘_{‘*;1 =8&'T5 — 53’,61'.-'1 =0=206% =50,.
- 0
On the other hand:
5i’i:z =Tk -1k = —55:3;1 # 0.

Therefore, in contracting tensors under the symbol of differentiation one has to
watch the character of the indices carefully. Only for indices of the same char-
acter are the operations of contraction and of absolute differentiation inter-
changeable.

The special choice of the symmetry property of T' and the differentiation
in Eq. (6) is justified by the following. If one forms the Hermitian conjugate
of the right-hand side of Eq. (6), i.e. if one interchanges 7 and k and then passes
to the conjugate complex, one gets:

Grin — Gkt — gral't's
or
girr — Gisli'r — gaTi'1,

i.e. Eq. (6) (or rather the right-hand side) coincides with its Hermitian conjugate
form. This is necessary in order that for a given field the I' be determined
(but not over-determined).

If one multiplies (6) by ¢* and contracts, one gets, considering (2):

) "7 @5+ T5) = 0.

The left-hand side of (7) has vector character independent of whether Eq. (7)
is satisfied or not. .
If we multiply Eq. (6) by —g¢*‘¢™ and sum with respect to 7 and , then, since
we have, because of (2):
g"'ga1 + ¢ g = 0
we get
(6a) 0=g¢"1+ @' + ¢°Ivs = g4L, .

The main difference of the generalized theory as compared to the pure theory
of gravitation, with regard to the equations determining T, lies in the fact that
the equations which determine T in terms of the g-field cannot be solved in a
simple manner.

Next to the concept of tensor, that of tensor-density is of importance. If
e.g. A is a tensor (1% rank), then

A = /—g4’

is the corresponding tensor-density, whereby the law of transformation is de-
termined.
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By differentiation we get, e.g.
Aby = APy + A°TSy .
If we multiply this by v/ —g we get that

(6b) Qi) = Ay + AT — 3% g—gk

is a tensor density, which we define to be the absolute derivative A%.. of A*. The
last term takes account of the density character of %°*. The analogous fact
holds for the differentiation of all tensor densities. In particular for a scalar den-
sity t we have:

'y
g

If we set T = \/—g then the absolute derivative vanishes.
If we set g% = v/ —g g” then

=11 — 3

(6(3) giliil = gik.l + Qal_c Faik + gia Flka - %g'k g_; = 0

where (6¢) follows from (6b) and from the definition of tensor density.

Curvature

We start from the expression for parallel translation, e.g. according to the
first of the equations (5). By translation of a complex vector along the boundary
of an infinitesimal (plane) surface-element, one obtains a (complex) tensor of
curvature just as in the theory of real fields.

One thus obtains the complex curvature-tensor

8) Tit'm — Tin'y — LT + Tamln’.
Contracting this according to the indices 7 and m we get the tensor
9 Tr'e — T%T0 — Tw’s + Ti4lds.

By taking the mean value of this tensor and its Hermitian conjugate we get
the Hermitian tensor

(10) Ra = Tula — T%T0 — 3(Ta’s + Tals) + 30506’ + Toa)-
Derivation of the field equations

It is now our aim to determine field equations which are compatible with our
definitions (6). This we achieve through the application of a method which is
already known from the theory of gravitation. For the time being we introduce
ga and T, as independent field quantities, without assuming that they are
combined by Eq. (6). From these quantities and their derivatives we construct
a Hamiltonian density-function $ whose integral we vary independently with
respect to the g and the I'. 9 is to be chosen so that the variation with respect
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to the T' yields the Eq. (6). The variation with respect to g will then yield the
proper field equations.

Derivation of the Hamiltonian function

We first construct a new tensor by subtracting a certain tensor Si; from Ri.
According to (7) we have that

_—‘—_"(za'i'rat)

is ‘a- vector. From it we construct the tensor Agi;k (= Su) getting

an Sa = [tog v/ =) ek — (log v/ =¢).aT:%]
— B + T — 3T + Tl

We get
(12) R* = Ry — Six = I'%ka — 0% Tk — log v/ —¢).ix + (log VvV =9).:xT% .

From this we construct with the help of the tensor-density g¢* the Hamiltonian
density-function

(13) $ = Ra*g™.
The field equations

The variation of the integral of § ‘with respect to I';% and g™ yields after
partial integration:

(14) s [§ar = [(~uMares + Guog® dr.
For U,* we get, because of (12) and (13):
(143) u‘:k o+ gbkr + g'b Pa b — 7gﬁ-‘ %ﬂ = gi{‘:a .

The variation with respect to g* yields first the integrand
Ra* 5ﬁﬂf — [a. % + (1% 8").al6(log \/—_g)
where
. 1 .
= ¢%8gu = —— ¢ ogu = —54 — g dg™
A ey S 64N —g) — gadg™]
or
o _ L gt = 2(0g /)
7 = N —g I8 = 2(log V' —g).

Substituting this expression, we get as the result of variation with respect to the g

1
(14h) G = Ru* T/ =g (8.7rs + (T+"8").algir
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The field equations following from our variation principle are then
r k
U, =0
Gil.: = O-

(15)

The first system is equivalent to (6). The second system can be transformed,
using the first. Namely from (6) we have

gus;a - 0 = Q[u.a + gbs Fba. + gab Fssb _ %gua%

or, because of (7) .
0%, + ¢” v’ — ¢TIy = 0 (where T, is as in equation (4).)

In the same way, from
gaa;a — O — gaa,a + gba I‘b.¢ + gsb I"ab _ %gsagé_c
follows:
6. + ¢V % + ¢TIy = 0.
We have therefore,
(16) 8 e + (T70) e = (Qab I't).a = "'(gba I'b)a = (szb Tb).a

where g% stands for the antisymmetric (imaginary) part of ¢**.  We can therefore
write

1
(14c) G = Ry* — 2\/?g (0" T4).agik -

The field equations are therefore written explicitly
0= gikit = Gita — Jax I"t — gia Tt
=G, =T%, —Ir%rb — ).
(15b) O G‘lk Fo k.a Po bra k (lOg \/ g).z,k

l a 1 ab
| + (log v/ —9).a T N =g 0" Tv)a gk -

The last term of G, vanishes in case of a real field. The remainder is then
identical with the once contracted curvature tensor.

The equations are compatible since they are derived from a Hamiltonian
principle; they are connected by a (real) quadruple-identity which can be de-
rived according to a well known method.

The question whether these equations have physical significance is difficult
to answer. One will tend to consider the antisymmetric part of the g, as a
representation of the electromagnetic field, at least for infinitely small fields.
However, the construction of the equations of first approximation show that
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they are weaker than the Maxwell equations. The fields can only be sufficiently
characterized by the requirement that they be regular throughout the entire
space. The physical test depends on the construction of exact solutions (if
there are regular ones). This is a difficult task. However, the theory appears
to be so natural as to justify great exertions.

ADDED IN PROOF:

The consideration of the field equations obtained suggests the adjunction of

the four equations
Ys = 0.

This is certainly permissible if there exist four additional identities between
these equations and the field equations derived from the Hamiltonian in (15b).
In that case the once contracted curvature (9) has Hermitian symmetry, the
last member of the second equation (15b) vanishes and the right-hand side of
these field equations becomes identical with the once contracted curvature (9).

In fact I have succeeded in establishing the above-mentioned identities. The
clarification of this point will, however, be left for a separate paper, since the
natural conception of the situation is connected with a new method for the
derivation of the field equations.
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